Jump to content

Early childhood caries

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by TheDDSguy (talk | contribs) at 07:16, 20 December 2023 (→‎Treatment: Updated the treatment section. Also made changes to the associated references.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Dental caries (tooth decay) as seen on a child

Early childhood caries (ECC), formerly known as nursing bottle caries, baby bottle tooth decay, night bottle mouth and night bottle caries, is a disease that affects teeth in children aged between birth and 71 months.[1][2] ECC is characterized by the presence of 1 or more decayed (noncavitated or cavitated lesions), missing (due to caries), or filled tooth surfaces in any primary tooth.[1] ECC has been shown to be a very common, transmissible bacterial infection, usually passed from the primary caregiver to the child.[2][3] The main bacteria responsible for dental caries are Streptococcus mutans (S. mutans) and Lactobacillus.[4] There is also evidence that supports that those who are in lower socioeconomic populations are at greater risk of developing ECC.[5][6]

Aetiology

Early childhood caries (ECC) is a multi-factorial disease, referring to various risk factors that inter-relate to increase risk of developing the disease. These risk factors include but not limits to, cariogenic bacteria, diet practices and socioeconomic factors.[6] Normally after 6 months, deciduous teeth begin to erupt means, they are susceptible to tooth decay or dental caries.[1] In some unfortunate cases, infants and young children have experienced severe tooth decay called ECC. This can result in the child experiencing severe pain, extensive dental restorations or extractions. The good news is that ECC is preventable, however, still remains a large burden particularly towards health care expenditure.

Microbial factors

The primary cariogenic bacteria involved in ECC are S. mutans and Lactobacillus.[6] The oral flora in an infant oral cavity is not colonised with normal oral flora until the eruption of the primary dentition at approximately 6 to 30 months of age. The colonisation of S. Mutans from mother to infant is well documented.[7] Over time this combination of food debris and bacteria form a biofilm on the tooth surface called plaque.[2] In plaque, the cariogenic microorganisms are those that produce lactic acid as a by-product from fermentable carbohydrates. Examples of these fermentable carbohydrates include fructose, sucrose and glucose.[6] Cariogenic bacteria thrive on these sugars and help them to weaken the adjacent tooth surface. A poor oral care routine and a diet that is high in fermentable carbohydrates favour acidic attack in the oral cavity.[6] This prolonged acidic exposure allows the net loss of minerals from the tooth.[6] This diminishes the strength of the tooth and is called demineralisation. For the outer layer of the tooth (enamel) to reach cavitation, there is a breakdown of the enamel matrix that allows the influx of the cariogenic bacteria. As cavitation progresses into dentine, the dental caries is classified severe, this causes ECC.

Dietary factors

Diet plays a key role in the process of dental caries. The type of foods along with the frequency at which they are consumed can determine the risk it puts for also developing carious lesions. With new products being put on supermarket shelves with irresistible prices, this can largely influence what people buy. It is common for infants and young children to frequently consume fermentable carbohydrates, in the form of liquids. The consumption of liquids containing fermentable carbohydrate, include drinks such as: juice, breast milk, formula, soda.[1] These consumables all have the potential to increase the risk of dental caries due to prolonged contact between sugars in the liquid and cariogenic bacteria on the tooth surface. Recent research has shown that breastfeeding does not increase caries risk up to 12 months of age.[1][8] Poor feeding practices without appropriate preventive measures can lead to a distinctive pattern of caries in susceptible infants and toddlers commonly known as baby bottle tooth decay or ECC. Frequent and long duration bottle feeding, especially at night, is associated with ECC.[1] This finding can be attributed to the fact that there is less salivary flow at night and hence less capacity for buffering and remineralisation.[2] Each time a child drinks these liquids, acids attack for 20 minutes or longer. A parent's education and health awareness has a major influence on the caries experience of their child - feeding practices, dietary habits and food choices.[1]

Socioeconomic factors

Dental caries still today, remains the most prevalent disease worldwide.[9] This means the disease is highly preventable, yet it is still burdening millions of children and into adulthood with pain and potentially lower quality of life.[5] There are several studies by Locker and Mota-Veloso reporting that there is a two-way relationship that exists between dental caries and levels of education, household income that effect quality of life and social positioning.[4][5] Locker suggested that the relationship between oral disease and health-related quality of life outcomes can be mediated by personal and environmental variables.[4] Previous studies have also mentioned that the rate of ECC has decreased. However, these results can tend to dis-include communities where equity still exists. More health promotion initiatives and policy-making that collaborate directly with the community to increase meeting their needs, should be implemented.[5]

While the primary aetiology is due to microbial factors, it is also largely influenced by the social, behavioral and economic determinants in which children are surrounded by. such factors include living in a low income earning family that may not have the budget to afford visiting a dental clinic. Secondly, having limited access to healthcare and education where important messages about the consumption of carcinogenic foods are not being transferred to children or their parents. Distribution of budget should be made to reach rural and remote communities to implement health promotion strategies to increase awareness about diet and oral hygiene.

The education, occupation and income of families also greatly affects the quality of life. Children greatly rely on their parents or guardians for help concerning their health and well-being.[10] Studies have shown that families of lower socioeconomic status are less likely to regularly attend the dentist and access preventive dental resources.[11] ECC also has an accumulative effect for those that live in rural areas.[11]

Prevention

Early childhood caries can be prevented through the combination of the following: adhering to a healthy nutritional diet, optimal plaque removal, use of fluoridation on the tooth surface once erupted, care taken by the mother during the pre-natal and peri-natal period and regular dental visits. The following are recommendations to help prevent ECC.

Adequate diet

Dietary habits and the presence of cariogenic bacteria within the oral cavity are an important factor in the risk of ECC. ECC is commonly caused by bottle feeding, frequent snacking and a high sugar diet.[9]

In regards to preventing ECC through bottle feeding, it is fundamental not to allow the child to sleep using 'sippy cups' or bottles as this is a large factor contributing to baby bottle decay/caries.[10] This is highly encouraged as it prevents continuous exposure to non-milk extrinsic sugars and therefore the potential progression of caries – this means the oral cavity can return to a neutral pH and therefore decreased acidity.[1] These researches also suggest trying to introduce cups to children as they approach their first birthday and to reduce the use of a bottle. A low-sugar and high nutritional diet is recommended for both the mother and the child especially during breastfeeding, and it is also recommended to avoid frequent snacking.[9]

A 2019 Cochrane review concluded that there is a 15% drop in risk of developing ECC when mothers with infants or pregnant women are given advice on a healthy child diet and feeding practices.[12]

Optimal plaque removal

On eruption of the first primary tooth in a child, tooth brushing and cleaning should be performed by an adult.[1] This is important as the plaque that attaches to the surface of the tooth has bacteria that have the ability to cause caries (decay) on the tooth surface. It is recommended to brush children's teeth using a soft bristled, age and size appropriate toothbrush and age appropriate toothpaste twice daily, however children below the age of two usually don't require toothpaste.[7] These researches also suggest that it is suitable to brush children's teeth until they reach the approximate age of 6; where they will begin to learn adequate dexterity and cognition needed for adequate brushing by themselves. It is encouraged to watch children brushing their teeth until they are competently able to brush appropriately alone.

Fluoride

Fluoride is a natural mineral that naturally occurs throughout the world – it is also the active ingredient of many toothpastes specifically for its remineralizing effects on enamel, often repairing the tooth surface and reducing the risk of caries.[8] The use of fluoridated toothpaste is highly recommended by dental professionals; whereby studies suggest that the correct daily use of fluoride on the dentition of children has a high caries-preventive effect and therefore prevents has potential to prevent ECC.[11] However, it is important to use fluoridated toothpastes correctly; children below the age of two do not usually require toothpaste unless they are already at a high risk of ECC as diagnosed by a dental professional, and therefore it is recommended to use a small sized 'smear' of toothpaste to incorporate fluoride, with caution removing the toothpaste from within the mouth and not allowing the child to swallow the substances.[7]

Pre-natal and peri-natal period

Prevention of early childhood caries begins before the baby is born; women are advised to maintain a well-balanced diet of high nutritional value, especially during the third trimester and within the infants first year of life.[10] This is since enamel undergoes maturation; if the diet is not sufficient, a common condition that may occur is enamel hypoplasia. Enamel hypoplasia is a developmental defect of enamel that occurs during tooth development, mainly pre-natally or during early childhood.[13] Teeth affected by enamel hypoplasia are commonly at a higher risk of caries since there is an increased loss of minerals and therefore the tooth surface is able to breakdown more easily than in comparison to a non-hypoplastic tooth.[13] It is therefore suggested to the mother to maintain a healthy diet since evidence suggests malnourishment during the perinatal period increases the risk of hypoplastic teeth in an infant.[9]

Dental visits

It is recommended to parents and caregivers to take their children to a dental professional for examination as soon as the first few teeth start to erupt into the oral cavity.[9] The dental professional will assess all the present dentition for early carious demineralization and may provide recommendations to the parents or caregivers the best way to prevent ECC and what actions to take.[9] Studies suggest that children who have attended visits within the first few years of life (an early preventive dental visit) potentially experience less dental related issues and incur lower dental related costs throughout their lives.[14]

Treatment

Early detection and risk assessment

The approach to managing Early Childhood Caries involves a combination of restoring or removing the decayed teeth. Dentists also focus heavily on early intervention strategies, which include the application of protective fluoride treatments directly to the teeth, guiding families through proper dental care routines, and offering nutritional advice to prevent further decay. During the initial dental visit, which plays a pivotal role, the dentist evaluates the child's dietary and oral hygiene habits. By doing so, they can identify behaviours that may contribute to tooth decay. These assessments take into account the child’s age and their social, behavioural, and medical background.

Tailored treatment based on caries risk

For children identified as having a low risk of tooth decay, the focus is on monitoring and preventive care rather than immediate dental treatments. Regular dental visits are encouraged to identify any new signs of decay early on. Early stages of decay (white spots) and initial enamel damage are managed with non-invasive preventive methods and are closely watched over time. High-risk children typically need more intensive treatment. This may include early restorative work to repair and address any existing decay to prevent further deterioration of the teeth. Since ECC affects children under the age of 5 years, dental treatments under general anesthesia may be necessary in select cases.[15] However, there's a notable concern with this method: despite the initial success of the treatment, decay can recur, with some cases reported as early as 6 months post-treatment​.[16]

Silver diamine fluoride

In managing Early Childhood Caries, dental professionals also have Silver Diamine Fluoride (SDF), a dual-action liquid that combats tooth decay. SDF combines the bacteria-battling power of silver with the tooth-strengthening properties of fluoride. This solution is brushed directly onto the affected areas, eliminating the immediate need for drilling and making it a less invasive treatment option.

SDF is known for its cost-effectiveness and ease of application. It effectively halts decay but does not rebuild the tooth structure; hence, a tooth treated with SDF may still require a filling or crown to restore its shape and function. One notable downside is the black staining of the decayed areas after SDF application. Despite this, the discoloration can be masked with a white filling material, a cosmetic concern that may be less significant for baby teeth that will eventually be replaced by permanent teeth.

The quick application process of SDF makes it particularly beneficial for young children and patients who find it difficult to remain still during dental procedures, potentially reducing the need for sedation or general anesthesia. However, the usage of SDF is not without debate. Further high-quality research is required to fully understand its effectiveness, necessity, and potential adverse effects​​​​​​.[17][18] This consideration gains importance in the context of FDA advisories regarding the use of general anesthetics and sedation in young children​​.[19] Nonetheless, the American Dental Association endorses SDF as an effective means to manage dental decay in a conservative manner​​.[20]

Stainless steel crowns

When it comes to repairing teeth affected by Early Childhood Caries, the extent of tooth decay will guide the choice of treatment. For moderate to severe decay, stainless steel crowns are a common option. These crowns are ready-made and can be tailored to fit over a child’s primary molar. The crowns are then fixed in place to restore the tooth. An alternative method for fitting these crowns is the Hall Technique, which does not require the decayed parts of the tooth to be removed first.

Atraumatic restorative treatment (ART)

For less invasive treatments, Atraumatic Restorative Treatment (ART) is an option. ART involves the partial removal of decayed tooth material with hand tools and sealing the cavity with a bonding material. This approach is particularly suitable for young patients because it is quicker and less likely to cause distress. It’s also beneficial when maintaining a tooth is important for spacing in the mouth, paving the way for permanent teeth to erupt properly in the future​​. However, it’s important to note that while ART is a valuable treatment, especially in areas where dental facilities are limited, studies suggest that fillings done with ART may be more prone to failure compared to those done with more traditional methods​​. Despite this, ART remains a recommended practice for managing tooth decay in young children under challenging conditions​​.[21]

References

  1. ^ a b c d e f g h i American Academy of Pediatric Dentistry, American Academy of Pediatrics. Policy on early childhood caries (ECC): classifications, consequences, and preventive strategies. Pediatr Dent [Internet]. 2016;38(6):52–54. Available from: http://www.ingentaconnect.com/content/aapd/pd/2016/00000038/00000006/art00024
  2. ^ a b c d Fejerskov O, Edwina A, Kidd M. Dental Caries: The Disease and its Clinical Management. 2nd ed. Oxford; Ames, Iowa: Blackwell Munksgaard;2008.
  3. ^ Elsevier. Early childhood caries: resource centre [Internet]. Elsevier; 2016. Available from: http://earlychildhoodcariesresourcecenter.elsevier.com/
  4. ^ a b c Locker D. Disparities in oral health‐related quality of life in a population of Canadian children. Community Dent Oral Epidemiol [Internet]. 2007 Oct 1;35(5):348-56. Available: http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0528.2006.00323.x/full DOI: 10.1111/j.1600-0528.2006.00323.x
  5. ^ a b c d Mota-Veloso, Isabella; Soares, Maria Eliza C.; Alencar, Bruna Mota; Marques, Leandro Silva; Ramos-Jorge, Maria Letícia; Ramos-Jorge, Joana (2016-01-01). "Impact of untreated dental caries and its clinical consequences on the oral health-related quality of life of schoolchildren aged 8–10 years". Quality of Life Research. 25 (1): 193–199. doi:10.1007/s11136-015-1059-7. ISSN 1573-2649.
  6. ^ a b c d e f Çolak, H, Dülgergil, ÇT, Dalli, M, Hamidi, MM. Early childhood caries update: A review of causes, diagnoses, and treatments. J Nat Sci Biol Med [Internet]. 2013 Jan 1;4(1):29–38. Available from: http://doi.org/10.4103/0976-9668.107257 DOI: 10.4103/0976-9668.107257
  7. ^ a b c Mohebbi SZ, Virtanen JI, Murtomaa H, Vahid‐GolpayeganI MO, Vehkalahti MM. Mothers as facilitators of oral hygiene in early childhood. Int J Paediat Dent. 2008 Jan 1;18(1):48-55. Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-263X.2007.00861.x/full DOI:10.1111/j.1365-263x.2007.00861.x
  8. ^ a b Colgate Australia. Dental fluoride - what is fluoride? [Internet]. Colgate-Palmolive Company; 2017. Available from: http://www.colgate.com.au/en/au/oc/oral-health/basics/fluoride/article/what-is-fluoride
  9. ^ a b c d e f Kawashita Y, Kitamura M, Saito T. Early childhood caries. International journal of dentistry [Internet]. 2011 Oct 10;2011. Available from: https://www.hindawi.com/journals/ijd/2011/725320/abs/ DOI: 10.1155/2011/725320
  10. ^ a b c Seminario, AL, Ivančaková R. Early childhood caries. Acta medica [Internet]. 2003 May;46(3):91-94. Retrieved from: ftp://orbis.lfhk.cuni.cz/Acta_Medica/2003/AM3_03.pdf
  11. ^ a b c Twetman S. Caries prevention with fluoride toothpaste in children: an update. Eur Arch Paediatr Dent [Internet]. 2009 Sep 1;10(3):162-8. Available from: http://go.galegroup.com/ps/anonymous?p=AONE&sw=w&issn=18186300&v=2.1&it=r&id=GALE%7CA227281634&sid=googleScholar&linkaccess=fulltext&authCount=1&isAnonymousEntry=true
  12. ^ Riggs, Elisha; Kilpatrick, Nicky; Slack-Smith, Linda; Chadwick, Barbara; Yelland, Jane; Muthu, M S; Gomersall, Judith C (2019-11-20). Cochrane Oral Health Group (ed.). "Interventions with pregnant women, new mothers and other primary caregivers for preventing early childhood caries". Cochrane Database of Systematic Reviews. 2019 (11). doi:10.1002/14651858.CD012155.pub2. PMC 6864402. PMID 31745970.
  13. ^ a b Caufield PW, Li Y, Bromage TG. Hypoplasia-associated severe early childhood caries–a proposed definition. J Dent Res [Internet]. 2012 Jun 1;91(6):544-50. Available from: http://journals.sagepub.com/doi/pdf/10.1177/0022034512444929 DOI:10.1177/0022034512444929
  14. ^ Savage MF, Lee JY, Kotch JB, Vann WF. Early preventive dental visits: effects on subsequent utilization and costs. Pediatrics [Internet]. 2004 Oct 1;114(4):418-23. Available from: http://pediatrics.aappublications.org/content/pediatrics/114/4/e418.full.pdf DOI:10.1542/peds.2003-0469-f
  15. ^ Weninger, Alyssa; Seebach, Erica; Broz, Jordyn; Nagle, Carol; Lieffers, Jessica; Papagerakis, Petros; Da Silva, Keith (2022-01-06). "Risk Indicators and Treatment Needs of Children 2–5 Years of Age Receiving Dental Treatment under General Anesthesia in Saskatchewan". Dentistry Journal. 10 (1): 8. doi:10.3390/dj10010008. ISSN 2304-6767.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ Amin, M.; Nouri, R.; ElSalhy, M.; Shah, P.; Azarpazhooh, A. (2015-01-27). "Caries recurrence after treatment under general anaesthesia for early childhood caries: a retrospective cohort study". European Archives of Paediatric Dentistry. 16 (4): 325–331. doi:10.1007/s40368-014-0166-4. ISSN 1818-6300.
  17. ^ Crystal, Yasmi; Niederman, Richard (Jan 2019). "Evidence-Based Dentistry Update on Silver Diamine Fluoride". Dental Clinics of North America. 63 (1): 45–68. doi:10.1016/j.cden.2018.08.011. PMC 6500430. PMID 30447792.
  18. ^ Horst, Jeremy; Ellenikiotis, Hellene; UCSF Silver Caries Arrest Committee; Milgrom, Peter (Jan 2016). "UCSF Protocol for Caries Arrest Using Silver Diamine Fluoride: Rationale, Indications, and Consent". Journal of the California Dental Association. 44 (1): 16–28. doi:10.1080/19424396.2016.12220962. PMC 4778976. PMID 26897901.
  19. ^ U.S. Food &Drug Administration (18 June 2019). "FDA Drug Safety Communication: FDA review results in new warnings about using general anesthetics and sedation drugs in young children and pregnant women". Food and Drug Administration. Retrieved 21 February 2020.
  20. ^ American Dental Association Center for Evidence-Based Dentistry. "Nonrestorative Treatments for Carious Lesions Clinical Practice Guideline". Retrieved 21 February 2020.
  21. ^ Dorri, Mojtaba; Martinez-Zapata, Maria José; Walsh, Tanya; Marinho, Valeria Cc; Sheiham Deceased, Aubrey; Zaror, Carlos (December 28, 2017). "Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries". The Cochrane Database of Systematic Reviews. 12 (3): CD008072. doi:10.1002/14651858.CD008072.pub2. ISSN 1469-493X. PMC 6486021. PMID 29284075.