Draft:Vela X-1/Quiz

From Wikiversity
Jump to navigation Jump to search
File:Som 3 05 p0.jpg
Rosat image of the Vela supernova remnant and its surroundings. Credit: H.E.S.S. collaboration, F. Aharonian et al.

Vela X-1 is a lecture from the radiation astronomy department for potential inclusion in the X-ray astronomy/Course.

You are free to take this quiz based on Vela X-1 at any time.

To improve your scores, read and study the lecture, the links contained within, listed under See also, External links, and in the {{radiation astronomy resources}} template. This should give you adequate background to get 100 %.

As a "learning by doing" resource, this quiz helps you to assess your knowledge and understanding of the information, and it is a quiz you may take over and over as a learning resource to improve your knowledge, understanding, test-taking skills, and your score.

Suggestion: Have the lecture available in a separate window.

To master the information and use only your memory while taking the quiz, try rewriting the information from more familiar points of view, or be creative with association.

Enjoy learning by doing!

  

1 Yes or No, Vela X-1 is the name and designation for the likely first extrasolar X-ray source to be discovered in the constellation Vela.

Yes
No

2 True or False, Some cosmic-ray observatories also look for high energy gamma rays and X-rays.

TRUE
FALSE

3 Which of the following are astronomical observatory phenomena associated with gamma-ray astronomy?

20 MeV electromagnetic radiation
the Second Small Astronomy Satellite (SAS-2)
micrometre-sized interstellar meteor particles
neutron irradiation
GRBs
meteor orbits
thorium on the Moon

4 True or False, The Hubble Space Telescope is currently capable of X-ray imaging.

TRUE
FALSE

5 Which of the following are characteristic of the first true astrophysical X-ray source?

a strong 2.223 MeV emission line
a solar flare
the formation of deuterium
the electron neutrino
OSO-3
neutrons

6 True or False, The first X-ray telescope was carried into orbit aboard OSO 3.

TRUE
FALSE

7 Complete the text:

Match up the imaging system letter with the image possibilities below:
Compton Gamma Ray Observatory (EGRET) - A
XMM Newton - B
Fermi Gamma-ray Space Telescope - C
Lunar Orbiter Gamma-Ray Spectrometer - D
BATSE - E
Mars Odyssey GRS - F
GLAST - G
Swift (X-ray/Gamma-ray mission) - H

File:Geminga-1.jpg

.

.

.

.

.

.

.

8 True or False, The distribution of X-ray bursts is tetratropic.

TRUE
FALSE

9 On what date was GRB 970228 discovered?

August 22, 1997
February 28, 1997
September 7, 2002.28
1982 the 20th between July and September
2009 July 22nd and 8 hours
February 14, 2014

10 True or False, On July 2, 1967, at 14:19 UTC, the Vela 4 and Vela 3 satellites detected a flash of X-radiation that was unlike any known nuclear weapons signatures.

TRUE
FALSE

11 Pick the characteristics of an X-ray burst.

a strong 2.223 MeV emission line
flashes of gamma rays
associated with extremely energetic explosions
most luminous events known
can last from ten milliseconds to several minutes
followed by a longer-lived "afterglow"

12 True or False, In 2005, ESO telescopes detected, for the first time, the visible light following a short-duration burst and tracked this light for three weeks.

TRUE
FALSE

13 Which types of radiation astronomy directly observe the rocky-object surface of Venus?

meteor astronomy
cosmic-ray astronomy
neutron astronomy
proton astronomy
beta-ray astronomy
neutrino astronomy
gamma-ray astronomy
X-ray astronomy
ultraviolet astronomy
visual astronomy
infrared astronomy
submillimeter astronomy
radio astronomy
radar astronomy
microwave astronomy
superluminal astronomy

14 Yes or No, In the proportional counter data from the Nike-Tomahawk flight on September 20, 1966, discrete sources Vela XR-1 and Cygnus XR-2 appear with a triangular shape characteristic of the collimator.

Yes
No

15 Complete the text:

Match up the item letter with each of the possibilities below:
Meteors - A
Cosmic rays - B
Neutrons - C
Protons - D
Electrons - E
Positrons - F
Gamma rays - G
Superluminals - H
X-ray jets

the index of refraction is often greater than 1 just below a resonance frequency

.
iron, nickel, cobalt, and traces of iridium

.
Sagittarius X-1

.
escape from a typical hard low-mass X-ray binary

.
collisions with argon atoms

.
X-rays are emitted as they slow down

.
Henry Moseley using X-ray spectra

.

16 Yes or No, For Vela X-1, the peak emission of the dust emission is co-spatial with the most prominent Hα arc seen in the supposed direction of space motion: it is concluded that the outer shock is radiative, but the inner shock is adiabatic, though some Hα emission possibly related to (part of) the inner termination shock is also detected.

Yes
No

17 Complete the text:

Match up the radiation letter with each of the detector possibilities below:
Meteors - A
Cosmic rays - B
Neutrons - C
Protons - D
Electrons - E
Positrons - F
Neutrinos - G
Muons - H
Gamma rays - I
X-rays - J
Ultraviolet rays - K
Optical rays - L
Visual rays - M
Violet rays - N
Blue rays - O
Cyan rays - P
Green rays - Q
Yellow rays - R
Orange rays - S
Red rays - T
Infrared rays - U
Submillimeter rays - V
Radio rays - W
Superluminal rays - X
multialkali (Na-K-Sb-Cs) photocathode materials

.
F547M

.
511 keV gamma-ray peak

.
F675W

.
broad-band filter centered at 404 nm

.
a cloud chamber

.
ring-imaging Cherenkov

.
coherers

.
effective area is larger by 104

.
F588N

.
pyroelectrics

.
a blemish about 8,000 km long

.
a metal-mesh achromatic half-wave plate

.
coated with lithium fluoride over aluminum

.
thallium bromide (TlBr) crystals

.
F606W

.
aluminum nitride

.
heavy water

.
18 micrometers FWHM at 490 nm

.
wide-gap II-VI semiconductor ZnO doped with Co2+ (Zn1-xCoxO)

.
a recoiling nucleus

high-purity germanium

.
magnetic deflection to separate out incoming ions

.
2.2-kilogauss magnet used to sweep out electrons

.

18 Yes or No, An X-ray source was observed in the constellation Vela from an attitude-controlled Aerobee 150 rocket launched from the White Sands Missile Range on February 2, 1968. The object, which may be the previously reported Vel XR-1 (Chodil et al. 1967), lies close to the galactic plane; we designate it as GX263+3.

Yes
No

19 Which of the following are cold dark matter X-rays?

expected signal comparable to background
annihilation radiation
a pronounced cosmic-ray halo
difficult to separate from a dark halo
dwarf spheroidals
weakly interacting massless particles

20 Yes or No, Actually, according to NASA's Universal coordinate converter, the X-ray source at lII = 263.3°, bII = 2.9° is 5.26° from Vela XR-1 at lII = 259° 08' 33.8", bII = 00 19' 35.7" not about 3°.

Yes
No


Hypotheses

[edit | edit source]
  1. X-rays may hold the key to conversion of electromagnetic radiation back into matter.

See also

[edit | edit source]
[edit | edit source]