login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a114857 -id:a114857
Displaying 1-3 of 3 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A114856 Indices n of ("bad") Gram points g(n) for which (-1)^n Z(g(n)) < 0, where Z(t) is the Riemann-Siegel Z-function. +10
24
126, 134, 195, 211, 232, 254, 288, 367, 377, 379, 397, 400, 461, 507, 518, 529, 567, 578, 595, 618, 626, 637, 654, 668, 692, 694, 703, 715, 728, 766, 777, 793, 795, 807, 819, 848, 857, 869, 887, 964, 992, 995, 1016, 1028, 1034, 1043, 1046, 1071, 1086 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
E. C. Titchmarsh, On van der Corput's Method and the zeta-function of Riemann IV, Quarterly Journal of Mathematics os-5 (1934), pp. 98-105.
Timothy Trudgian, On the success and failure of Gram's Law and the Rosser Rule, Acta Arithmetica, 2011 | 148 | 3 | 225-256.
Eric Weisstein's World of Mathematics, Gram Point.
FORMULA
Trudgian shows that a(n) = O(n), that is, there exists some k such that a(n) <= k*n. - Charles R Greathouse IV, Aug 29 2012
In fact Trudgian shows that a(n) ≍ n, and further, there exist constants 1 < b < c such that b*n < a(n) < c*n. (See the paper's discussion of the Weak Gram Law.) - Charles R Greathouse IV, Mar 28 2023
EXAMPLE
(-1)^126 Z(g(126)) = -0.0276294988571999.... - David Baugh, Apr 02 2008
MATHEMATICA
g[n_] := (g0 /. FindRoot[ RiemannSiegelTheta[g0] == Pi*n, {g0, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}, WorkingPrecision -> 16]); Reap[For[n = 1, n < 1100, n++, If[(-1)^n*RiemannSiegelZ[g[n]] < 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 17 2012, after Eric W. Weisstein *)
PROG
(PARI) g0(n)=2*Pi*exp(1+lambertw((8*n+1)/exp(1)/8)) \\ approximate location of gram(n)
th(t)=arg(gamma(1/4+I*t/2))-log(Pi)*t/2 \\ theta, but off by some integer multiple of 2*Pi
thapprox(t)=log(t/2/Pi)*t/2-t/2-Pi/8+1/48/t-1/5760/t^3
RStheta(t)=my(T=th(t)); (thapprox(t)-T)\/(2*Pi)*2*Pi+T
gram(n)=my(G=g0(n), k=n*Pi); solve(x=G-.003, G+1e-8, RStheta(x)-k)
Z(t)=exp(th(t)*I)*zeta(1/2+I*t)
is(n)=my(G=gram(n)); real((-1)^n*Z(G))<0 \\ Charles R Greathouse IV, Jan 22 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jan 02 2006
EXTENSIONS
Definition corrected by David Baugh, Apr 02 2008
STATUS
approved
A002505 Nearest integer to the n-th Gram point.
(Formerly M5052 N2185)
+10
8
18, 23, 28, 32, 35, 39, 42, 46, 49, 52, 55, 58, 60, 63, 66, 68, 71, 74, 76, 79, 81, 84, 86, 88, 91, 93, 95, 98, 100, 102, 104, 107, 109, 111, 113, 115, 118, 120, 122, 124, 126 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Every integer greater than 3295 is in this sequence. - T. D. Noe, Aug 03 2007
Nearest integer to points t such that Re(zeta(1/2+i*t)) is not equal to zero and Im(zeta(1/2+i*t))=0. - Mats Granvik, May 14 2016
REFERENCES
C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
A. Ivić, The Theory of Hardy's Z-Function, Cambridge University Press, 2013, pages 109-112.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Guilherme França and André LeClair, A theory for the zeros of Riemann Zeta and other L-functions, arXiv:1407.4358 [math.NT], 2014, formula (163) at page 47.
C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function, annotated scanned copy of page 58.
Eric Weisstein's World of Mathematics, Gram Point.
FORMULA
a(n) ~ 2*Pi*n/log n. - Charles R Greathouse IV, Oct 23 2015
From Mats Granvik, May 16 2016: (Start)
a(n) = round(2*Pi*exp(1 + LambertW((8*n + 1)/(8*exp(1))))), Eric Weisstein's World of Mathematics.
a(n+1) = round(2*Pi*(n - 7/8)/LambertW((n - 7/8)/exp(1))), after Guilherme França, André LeClair formula (163) page 47.
(End)
For c = 0 the n-th Gram point x is the fixed point solution to the iterative formula:
x = 2*Pi*e^(LambertW (-((c - n + RiemannSiegelTheta (x)/Pi + (x*(-log (x) + 1 + log (2) + log (Pi)))/(2*Pi) + 2)/e)) + 1). - Mats Granvik, Jun 17 2017
MATHEMATICA
a[n_] := Round[ g /. FindRoot[ RiemannSiegelTheta[g] == Pi*n, {g, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 17 2012, after Eric W. Weisstein *)
PROG
(Sage)
a = lambda n: round(2*pi*(n - 7/8)/lambert_w((n - 7/8)/exp(1)))
print([a(n) for n in (1..41)]) # Peter Luschny, May 19 2016
CROSSREFS
Cf. A273061. A114857 = 17.8455995..., A114858 = 23.1702827...
KEYWORD
nonn
AUTHOR
STATUS
approved
A114858 Decimal expansion of first Gram point. +10
3
2, 3, 1, 7, 0, 2, 8, 2, 7, 0, 1, 2, 4, 6, 3, 0, 9, 2, 7, 8, 9, 9, 6, 6, 4, 3, 5, 3, 8, 3, 0, 1, 5, 3, 2, 0, 5, 1, 7, 4, 7, 0, 9, 8, 3, 2, 6, 8, 4, 1, 6, 4, 6, 9, 7, 0, 8, 3, 0, 0, 8, 8, 5, 1, 9, 0, 2, 2, 9, 6, 6, 0, 3, 1, 9, 9, 3, 6, 0, 9, 3, 9, 0, 3, 3, 1, 0, 5, 7, 7, 4, 8, 3, 4, 4, 6, 3, 9, 1, 6, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Gram Point
EXAMPLE
23.1702827...
MATHEMATICA
First[ RealDigits[t /. FindRoot[ RiemannSiegelTheta[t] == Pi, {t, 23}, WorkingPrecision -> 120], 10, 102]] (* Jean-François Alcover, Jun 07 2012 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 02 2006
STATUS
approved
page 1

Search completed in 0.003 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 19 13:57 EDT 2024. Contains 374394 sequences. (Running on oeis4.)