Saltar para o conteúdo

Equação do quarto grau: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
equação quártica redireciona aqui
Silvia Sants (discussão | contribs)
Linha 1: Linha 1:
{{sem-fontes|data=setembro de 2012}}
{{mais-fontes|data=setembro de 2012}}
{{revisão|data=setembro de 2012}}
{{revisão|data=setembro de 2012}}
[[Imagem:Polynomialdeg4.png|thumb|250px|direita|Gráfico de um polinômio do quarto grau, com quatro raízes reais distintas]]
[[Imagem:Polynomialdeg4.png|thumb|250px|direita|Gráfico de um polinômio do quarto grau, com quatro raízes reais distintas]]

Revisão das 15h29min de 26 de junho de 2019

Gráfico de um polinômio do quarto grau, com quatro raízes reais distintas

Em matemática, uma equação do quarto grau ou equação quártica é uma equação polinomial monovariável de grau quatro. A forma geral de uma equação do quarto grau é dada por:em que os coeficientes , , , e são elementos de um corpo, geralmente o dos números reais ou complexos.

Exemplos

Existência de soluções

O teorema fundamental da álgebra garante que uma equação quártica sempre terá quatro soluções (raízes), simples ou múltiplas, no conjunto dos números complexos.

Formas especiais

Equação biquadrática

Ver artigo principal: Equação biquadrada

Uma equação biquadrática é uma equação do quarto grau que, quando reduzida, é apresentada da seguinte forma:Como , esta equação pode ser reduzida a uma equação do segundo grau através da mudança de variáveis , de modo queOs valores de que satisfazem esta equação são dados pela fórmula: Logo, e .

Produtos Notáveis

Toda equação do 4° grau que, na forma reduzida apresente coeficientes nulos, será um produto notável com as raízes em

  • Exemplo: quando reduzido fica na forma logo ou

Formula de Wilson x⁴=y²

O método de Ferrari

As soluções podem ser encontradas usando o método de Ferrari desenvolvido pelo matemático italiano Lodovico Ferrari. Ferrari resolveu uma equação que, em linguagem moderna, pode ser escrita como:Nota-se que a equação geral pode ser reduzida a este caso através da transformação e dividindo a equação resultante por .

Ao dividirmos a equação por , a equação terá a forma , onde , , e [1]. Ao realizar a substituição a equação assumirá a forma reduzida , onde[1]

A partir daqui, o método consiste em transformar a equação em uma diferença de quadrados tal qual cuja solução pode ser obtida através dos métodos de resolução de equações do segundo grau.

No primeiro passo, o primeiro membro da equação, é transformado no quadrado baseado em ou seja, Em seguida, somam-se termos em uma nova variável porém de forma a que o primeiro membro não deixe de ser um quadrado. Para isto, além de somar devemos somar também ou seja:Reescrevendo:O segundo membro da equação pode ser reescrito como onde e são soluções da equação quadrática

ou seja,

Para que a equação se torne uma diferença de quadrados, é necessário que seja um quadrado, então escreveremos que que necessita que a raiz quadrada na fórmula seja nula.

Em outras palavras, isto requer:que, expandido, gera a equação do terceiro grau auxiliar:onde apenas uma raiz é necessária (recomenda-se utilizar uma raiz real). Quando , a equação sempre irá possuir uma raiz real positiva[1].

Retomando o cálculo da incógnita temos que

Com isso a equação pode ser reescrita como ou

que resulta em uma diferença de dois quadrados:

Que gera duas equações quadráticas que podem ser resolvidas pelos métodos de resolução de equações de segundo grau nas equações seguintes:


Ver também

Referências
  1. a b c Felipe, Henrique (9 de junho 2018). «Algoritmo da Equação do Quarto Grau». Blog Cyberini. Consultado em 4 de julho de 2018 

Ligações externas

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.