Přeskočit na obsah

Vícerozměrný integrál: Porovnání verzí

Z Wikipedie, otevřené encyklopedie
Smazaný obsah Přidaný obsah
Aplikace a Vlastnosti odkazy, překlepy
reference, přidání podmínek
Řádek 1: Řádek 1:
{{Pracuje se}}
{{Pracuje se}}
'''Vícerozměrný integrál''' je a [[určitý integrál]] [[funkce reálné proměnné|reálné funkce]] [[funkce více proměnných|více proměnných]] na dané [[množina|množině]]. Zapisuje se <math> \int \cdots \int_\mathbf{M}\, f(x_1,x_2,\ldots,x_n) \,dx_1 \!\cdots dx_n </math>, kde funkce <math>f(x_1,x_2,\ldots,x_n): \mathbb{R}^{n} \to \mathbb{R}</math> se nazývá [[integrand]] a <math>\mathbf{M}</math> je daná vhodná množina.<ref>{{Citace elektronické monografie
'''Vícerozměrný integrál''' je a [[určitý integrál]] [[funkce reálné proměnné|reálné funkce]] [[funkce více proměnných|více proměnných]] na dané [[množina|množině]]. Zapisuje se <math> \int \cdots \int_\mathbf{M}\, f(x_1,x_2,\ldots,x_n) \,dx_1 \!\cdots dx_n </math>, kde funkce <math>f(x_1,x_2,\ldots,x_n): \mathbb{R}^{n} \to \mathbb{R}</math> se nazývá [[integrand]]<ref>{{Citace elektronické monografie
| titul = MATEMATICKÁ ANALÝZA pro FIT
| titul = MATEMATICKÁ ANALÝZA pro FIT
| url = https://www.umat.fekt.vut.cz/~hlinena/IMA1/Prednasky/skripta.pdf
| url = https://www.umat.fekt.vut.cz/~hlinena/IMA1/Prednasky/skripta.pdf
Řádek 7: Řádek 7:
| datum přístupu = 2022-10-11
| datum přístupu = 2022-10-11
| strany = 145
| strany = 145
}}</ref> Tento zápis se často zkracuje na <math>\int_\mathbf{M}\!f(\mathbf{x})\,d^n\mathbf{x}.</math>
}}</ref> a <math>\mathbf{M}\subset \mathbb{R}</math> je daná vhodná množina. Tento zápis se často zkracuje na <math>\int_\mathbf{M}\!f(\mathbf{x})\,d^n\mathbf{x}.</math>


Vícerozměrný integrál je různý pojem od [[vícenásobný integrál]], tedy od postupné integrace po složkách, neboť vícenásobné integrály mohou existovat i pro neintegrovatelné funkce.{{Poznámka|Příkladem budiž funkce<math>f(x,y) = \frac{x^2-y^2}{(x^2+y^2)^2}</math>. Její dvojnásobné integrály <math display=>\int_{x=0}^1\left(\int_{y=0}^1 f(x,y)\,\text{d}y\right)\,\text{d}x = \frac{\pi}{4}</math> a <math display=>\int_{y=0}^1\left(\int_{x=0}^1 f(x,y)\,\text{d}x\right)\,\text{d}y=-\frac{\pi}{4}</math>jsou různé. A tedy tato funkce není intgrovatelná.<ref>{{Citace elektronické monografie
Vícerozměrný integrál je různý pojem od [[vícenásobný integrál]], tedy od postupné integrace po složkách, neboť vícenásobné integrály mohou existovat i pro neintegrovatelné funkce.{{Poznámka|Příkladem budiž funkce<math>f(x,y) = \frac{x^2-y^2}{(x^2+y^2)^2}</math>. Její dvojnásobné integrály <math display=>\int_{x=0}^1\left(\int_{y=0}^1 f(x,y)\,\text{d}y\right)\,\text{d}x = \frac{\pi}{4}</math> a <math display=>\int_{y=0}^1\left(\int_{x=0}^1 f(x,y)\,\text{d}x\right)\,\text{d}y=-\frac{\pi}{4}</math>jsou různé. A tedy tato funkce není intgrovatelná.<ref>{{Citace elektronické monografie
Řádek 50: Řádek 50:
f \left (x_1,x_2,\ldots,x_n \right ), & \mbox{pro }x \in \mathbf{M} \\
f \left (x_1,x_2,\ldots,x_n \right ), & \mbox{pro }x \in \mathbf{M} \\
0, & \mbox{pro }x \in \R \smallsetminus \mathbf{M}
0, & \mbox{pro }x \in \R \smallsetminus \mathbf{M}
\end{cases}</math>
\end{cases}</math> integrovatelná na nějakém uzavřeném vícerozměrném intervalu <math>\mathbf{J} \subseteq \R^n</math> takovém, že <math>\mathbf{M} \subseteq \mathbf{J}</math>.


integrovatelná na nějakém uzavřeném vícerozměrném intervalu <math>\mathbf{J} \subseteq \R^n</math> takovém, že <math>\mathbf{M} \subseteq \mathbf{J}</math>.
Vícenásobným (Riemannovým) integrálem funkce <math>f</math> na množině <math>\mathbf{M}</math> pak rozumíme číslo <math>\int \cdots \int_\mathbf{M}\, f\left (x_1,x_2,\ldots,x_n\right )\,dx_1 \!\cdots dx_n = \int \cdots \int_\mathbf{J}\, \left ( \mathbf{M} \cdot \chi_\mathbf{M} \right )f\left (x_1,x_2,\ldots,x_n\right )\,dx_1 \!\cdots dx_n</math>.


Pro prázdnou množinu definujeme <math>\int \cdots \int_\empty \, f\left (x_1,x_2,\ldots,x_n\right )\,dx_1 \!\cdots dx_n = 0</math> pro každou funkci <math>f: \R^n \to \R</math>.
Vícenásobným (Riemannovým) integrálem funkce <math>f</math> na množině <math>\mathbf{M}</math> pak rozumíme číslo <math>\int \cdots \int_\mathbf{M}\, f\left (x_1,x_2,\ldots,x_n\right )\,dx_1 \!\cdots dx_n = \int \cdots \int_\mathbf{J}\, \left ( \mathbf{M} \cdot \chi_\mathbf{M} \right )f\left (x_1,x_2,\ldots,x_n\right )\,dx_1 \!\cdots dx_n</math>.<ref name=":0">{{Citace elektronické monografie
| příjmení = Vodstrčil
| jméno = Petr
| příjmení2 = Bouchala
| jméno2 = JIří
| titul = INTEGRÁLNÍ POČET FUNKCÍ VÍCE PROMĚNNÝCH
| url = https://mi21.vsb.cz/sites/mi21.vsb.cz/files/unit/integralni_pocet.pdf
| vydavatel = Vysoká škola báňská – Technická univerzita Ostrava a Západočeská univerzita v Plzni
| datum vydání = 13. června 2012
| datum přístupu = 2022-11-11
| kapitola = 1.4 Dvojný integrál na měřitelné množině
| strany = 11
}}</ref>

Pro prázdnou množinu definujeme <math>\int \cdots \int_\empty \, f\left (x_1,x_2,\ldots,x_n\right )\,dx_1 \!\cdots dx_n = 0</math> pro každou funkci <math>f: \R^n \to \R</math>.<ref name=":0" />


== Speciální případy ==
== Speciální případy ==
Řádek 63: Řádek 77:


Důležitou vlastností je, že hodnota vícenásobného integrálu nezávisí na pořadí integrace. Toto je známo jako [[Fubiniova věta]].
Důležitou vlastností je, že hodnota vícenásobného integrálu nezávisí na pořadí integrace. Toto je známo jako [[Fubiniova věta]].

=== Podmínky integrovatelnosti ===
Je-li funkce <math>f: \mathbb{R}^{n} \to \mathbb{R}</math> spojitá v uzavřeném intervalu <math>\mathbf{J} \subseteq \R^n</math>, pak existuje <math>\iint_M f(x,y)\, dx\, dy</math>.<ref name=":0" />


== Aplikace ==
== Aplikace ==
Řádek 77: Řádek 94:
* [[parciální derivace]]
* [[parciální derivace]]
* [[Diferenciál (matematika)|diferenciál]]
* [[Diferenciál (matematika)|diferenciál]]
<!--* vícenásobný integrál-->

Verze z 11. 11. 2022, 20:29

Vícerozměrný integrál je a určitý integrál reálné funkce více proměnných na dané množině. Zapisuje se , kde funkce se nazývá integrand[1] a je daná vhodná množina. Tento zápis se často zkracuje na

Vícerozměrný integrál je různý pojem od vícenásobný integrál, tedy od postupné integrace po složkách, neboť vícenásobné integrály mohou existovat i pro neintegrovatelné funkce.[pozn. 1]

Vícerozměrný integrál se často vyčísluje pomocí Fubiniovy věty a substituce souřadnic.

Definice

Motivace

Dvojný integrál jako objem pod plochou.

Často je nutno udělat součet hodnot nějaké funkce na vícerozměrné množině. Například objem nějakého tělesa, hmotnost tělesa s nekonstantní hustotou, energii nějakého pole. Takovým součtem je právě vícerozměrný integrál.

Dvojný integrál na obdélníku

Pro mějme funkci .

Rozdělíme-li každý z intervalů na konečnou množinu disjunktních podintervalů , získáme dělení n-rozměrného intervalu na systém intervalů , pro které platí .

(n+1)-rozměrný objem pod n-rozměrnou plochou (grafem funkce ) na intervalu můžeme aproximovat Riemannovým součtemː

,

kdeXk jje prvek intervalu Ik and σ(Ik) je míra intervalu Ik (tedy součin délek jednotlivých jednorozměrných intervalů ) .

Řekneme, že funkce f je Riemannovsky integrovatelná, jestliže existuje konečná limita přes všechny možné dělení intervalu I na podintervaly míry maximálně δ:

.[3]

Jestliže je f is Riemannovsky integrovatelná, tak S se nazývá (vícerozměrný) Riemannův integral funkce f na intervalu I a píše se

.

Na měřitelné množině

Buď funkce omezená na neprázdné měřitelné množině . Řekneme, že funkce je na množině (Riemannovsky) integrovatelná, je-li funkce definovaná předpisem

integrovatelná na nějakém uzavřeném vícerozměrném intervalu takovém, že .

Vícenásobným (Riemannovým) integrálem funkce na množině pak rozumíme číslo .[4]

Pro prázdnou množinu definujeme pro každou funkci .[4]

Speciální případy

V případě, že , tak se nazývá dvojný integrál funkce f na M, dále pro je trojný integrál funkce f na M.

Vlastnosti

Většinu vlastností má vícerozměrný integrál stejné jako jednorozměrný určitý integrál. Mezi nimi linearitu, komutativitu.

Důležitou vlastností je, že hodnota vícenásobného integrálu nezávisí na pořadí integrace. Toto je známo jako Fubiniova věta.

Podmínky integrovatelnosti

Je-li funkce spojitá v uzavřeném intervalu , pak existuje .[4]

Aplikace

Podrobnější informace naleznete v článku Aplikace integrálu.

Mezi aplikace vícerozměrného integrálu patří výpočet objemu, hmotnosti a umístění těžiště. Dále například výpočet energie fyzikálního pole.

Poznámky

  1. Příkladem budiž funkce. Její dvojnásobné integrály a jsou různé. A tedy tato funkce není intgrovatelná.[2]

Reference

V tomto článku byl použit překlad textu z článku Multiple integral na anglické Wikipedii.

  1. MATEMATICKÁ ANALÝZA pro FIT [online]. Brno: VUT [cit. 2022-10-11]. S. 145. Dostupné online. 
  2. Jan Čepička, Petr Girg, Petr Nečesal, Josef Polák. Herbář funkcí [online]. Ostrava: VŠB TUO, 2011 [cit. 2022-10-11]. Dostupné online. 
  3. RUDIN, Walter. Principles of Mathematical Analysis. 3rd. vyd. [s.l.]: McGraw–Hill (Walter Rudin Student Series in Advanced Mathematics). Dostupné online. ISBN 978-0-07-054235-8. 
  4. a b c VODSTRČIL, Petr; BOUCHALA, JIří. INTEGRÁLNÍ POČET FUNKCÍ VÍCE PROMĚNNÝCH [online]. Vysoká škola báňská – Technická univerzita Ostrava a Západočeská univerzita v Plzni, 13. června 2012 [cit. 2022-11-11]. Kapitola 1.4 Dvojný integrál na měřitelné množině, s. 11. Dostupné online. 

Související články