Jump to content

Nucleoprotein: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
AnomieBOT (talk | contribs)
m Dating maintenance tags: {{Citation needed}}
 
(35 intermediate revisions by 23 users not shown)
Line 1: Line 1:
{{short description|Type of protein}}
[[File:Nucleosome_structure.png|link=https://en.wikipedia.org/wiki/File:Nucleosome_structure.png|thumb|400x400px|A [[nucleosome]] is a combination of [[DNA]] + [[Histone|histone proteins]].]]{{distinguish|Nuclear protein}}
{{distinguish|Nuclear protein}}
'''Nucleoproteins''' are any [[protein]]s that are structurally associated with [[nucleic acid]]s,<ref>{{MeshName|Nucleoproteins}}</ref> either [[DNA]] or [[RNA]]. Typical nucleoproteines include [[ribosome]]s, [[nucleosome]]s, and viral nucleocapsid proteins.
[[File:Nucleosome_structure.png|thumb|400x400px|A [[nucleosome]] is a combination of [[DNA]] + [[Histone|histone proteins]].]]
'''Nucleoproteins''' are [[protein]]s conjugated with [[nucleic acid]]s (either [[DNA]] or [[RNA]]).<ref>{{MeshName|Nucleoproteins}}</ref> Typical nucleoproteins include [[ribosome]]s, [[nucleosome]]s and viral [[nucleocapsid]] proteins.


== Structures ==
== Structures ==
[[File:178-EbolaVirusProteins EbolaProteins.png|thumb|227x227px|Cross-sectional drawing of the Ebola virus particle, with structures of the major proteins shown and labelled on the right.]]
[[File:178-EbolaVirusProteins EbolaProteins.png|thumb|227x227px|Cross-sectional drawing of the [[Ebola virus]] particle, with structures of the major proteins shown and labelled on the right]]
Nucleoproteins tend to be positively charged, facilitating interaction with the negatively charged nucleic acid chains. The [[Protein tertiary structure|tertiary structures]] and biological functions of many nucleoproteins are understood.<ref>Graeme K. Hunter G. K. (2000): Vital Forces. The discovery of the molecular basis of life. Academic Press, London 2000, {{ISBN|0-12-361811-8}}.</ref><ref>Nelson D. L., Cox M. M. (2013): Lehninger Biochemie. Springer, {{ISBN|978-3-540-68637-8}}.</ref> Important techniques for determining the structures of nucleoproteins include [[X-ray diffraction]], [[nuclear magnetic resonance]] and [[cryo-electron microscopy]].
Nucleoproteins tend to be positively charged, facilitating interaction with the negatively charged nucleic acid chains. The [[Protein tertiary structure|tertiary structures]] and biological functions of many nucleoproteins are understood.<ref name="Graeme K. Hunter G. K. 2000">Graeme K. Hunter G. K. (2000): Vital Forces. The discovery of the molecular basis of life. Academic Press, London 2000, {{ISBN|0-12-361811-8}}.</ref><ref>Nelson D. L., Cox M. M. (2013): Lehninger Biochemie. Springer, {{ISBN|978-3-540-68637-8}}.</ref> Important techniques for determining the structures of nucleoproteins include [[X-ray diffraction]], [[nuclear magnetic resonance]] and [[cryo-electron microscopy]].


=== Viruses ===
=== Viruses ===
[[Virus]] genomes (either [[DNA virus|DNA]] or [[RNA virus|RNA]]) are extremely tightly packed into the [[Capsid|viral capsid]].<ref>{{Cite journal|last=Tzlil|first=Shelly|last2=Kindt|first2=James T.|last3=Gelbart|first3=William M.|last4=Ben-Shaul|first4=Avinoam|title=Forces and Pressures in DNA Packaging and Release from Viral Capsids|url=http://linkinghub.elsevier.com/retrieve/pii/S0006349503749716|journal=Biophysical Journal|volume=84|issue=3|pages=1616–1627|doi=10.1016/s0006-3495(03)74971-6}}</ref><ref>{{Cite journal|last=Purohit|first=Prashant K.|last2=Inamdar|first2=Mandar M.|last3=Grayson|first3=Paul D.|last4=Squires|first4=Todd M.|last5=Kondev|first5=Jané|last6=Phillips|first6=Rob|title=Forces during Bacteriophage DNA Packaging and Ejection|url=http://linkinghub.elsevier.com/retrieve/pii/S000634950573160X|journal=Biophysical Journal|volume=88|issue=2|pages=851–866|doi=10.1529/biophysj.104.047134}}</ref> Many [[Virus|viruses]] are therefore little more than an organised collection of nucleoproteins with their binding sites pointing inwards. Structurally characterised viral nucleoproteins include [[Influenza A virus|influenza]],<ref>{{Cite journal|last=Ng|first=Andy Ka-Leung|last2=Wang|first2=Jia-Huai|last3=Shaw|first3=Pang-Chui|date=2009-05-27|title=Structure and sequence analysis of influenza A virus nucleoprotein|url=https://link.springer.com/article/10.1007/s11427-009-0064-x|journal=Science in China Series C: Life Sciences|language=en|volume=52|issue=5|pages=439–449|doi=10.1007/s11427-009-0064-x|issn=1006-9305}}</ref> [[rabies virus|rabies]],<ref>{{Cite journal|last=Albertini|first=Aurélie A. V.|last2=Wernimont|first2=Amy K.|last3=Muziol|first3=Tadeusz|last4=Ravelli|first4=Raimond B. G.|last5=Clapier|first5=Cedric R.|last6=Schoehn|first6=Guy|last7=Weissenhorn|first7=Winfried|last8=Ruigrok|first8=Rob W. H.|date=2006-07-21|title=Crystal Structure of the Rabies Virus Nucleoprotein-RNA Complex|url=http://science.sciencemag.org/content/313/5785/360|journal=Science|language=en|volume=313|issue=5785|pages=360–363|doi=10.1126/science.1125280|issn=0036-8075|pmid=16778023}}</ref> [[Ebola virus|Ebola]], [[Bunyamwera virus|Bunyamwera]],<ref name=":1">{{Cite journal|last=Ariza|first=A.|last2=Tanner|first2=S. J.|last3=Walter|first3=C. T.|last4=Dent|first4=K. C.|last5=Shepherd|first5=D. A.|last6=Wu|first6=W.|last7=Matthews|first7=S. V.|last8=Hiscox|first8=J. A.|last9=Green|first9=T. J.|date=2013-06-01|title=Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization|url=https://doi.org/10.1093/nar/gkt268|journal=Nucleic Acids Research|volume=41|issue=11|pages=5912–5926|doi=10.1093/nar/gkt268|issn=0305-1048|pmc=3675483|pmid=23595147}}</ref> [[Schmallenberg virus|Schmallenberg]],<ref name=":1" /> [[Hazara virus|Hazara]],<ref>{{Cite journal|last=Surtees|first=Rebecca|last2=Ariza|first2=Antonio|last3=Punch|first3=Emma K.|last4=Trinh|first4=Chi H.|last5=Dowall|first5=Stuart D.|last6=Hewson|first6=Roger|last7=Hiscox|first7=Julian A.|last8=Barr|first8=John N.|last9=Edwards|first9=Thomas A.|date=2015-01-01|title=The crystal structure of the Hazara virus nucleocapsid protein|url=https://dx.doi.org/10.1186/s12900-015-0051-3|journal=BMC Structural Biology|volume=15|pages=24|doi=10.1186/s12900-015-0051-3|issn=1472-6807|pmc=4696240|pmid=26715309}}</ref> [[Crimean–Congo hemorrhagic fever|Crimean-Congo hemorrhagic fever]],<ref>{{Cite journal|last=Carter|first=Stephen D.|last2=Surtees|first2=Rebecca|last3=Walter|first3=Cheryl T.|last4=Ariza|first4=Antonio|last5=Bergeron|first5=Éric|last6=Nichol|first6=Stuart T.|last7=Hiscox|first7=Julian A.|last8=Edwards|first8=Thomas A.|last9=Barr|first9=John N.|date=2012-10-15|title=Structure, Function, and Evolution of the Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein|url=http://jvi.asm.org/content/86/20/10914|journal=Journal of Virology|language=en|volume=86|issue=20|pages=10914–10923|doi=10.1128/JVI.01555-12|issn=0022-538X|pmc=3457148|pmid=22875964}}</ref> and [[Lassa virus|Lassa]].<ref>{{Cite journal|last=Qi|first=Xiaoxuan|last2=Lan|first2=Shuiyun|last3=Wang|first3=Wenjian|last4=Schelde|first4=Lisa McLay|last5=Dong|first5=Haohao|last6=Wallat|first6=Gregor D.|last7=Ly|first7=Hinh|last8=Liang|first8=Yuying|last9=Dong|first9=Changjiang|title=Cap binding and immune evasion revealed by Lassa nucleoprotein structure|url=https://dx.doi.org/10.1038/nature09605|journal=Nature|volume=468|issue=7325|pages=779–783|doi=10.1038/nature09605|pmc=3057469|pmid=21085117}}</ref>
[[Virus]] genomes (either [[DNA virus|DNA]] or [[RNA virus|RNA]]) are extremely tightly packed into the [[Capsid|viral capsid]].<ref>{{Cite journal|last1=Tzlil|first1=Shelly|last2=Kindt|first2=James T.|last3=Gelbart|first3=William M.|last4=Ben-Shaul|first4=Avinoam|title=Forces and Pressures in DNA Packaging and Release from Viral Capsids|journal=Biophysical Journal|volume=84|issue=3|pages=1616–1627|doi=10.1016/s0006-3495(03)74971-6|pmid=12609865|pmc=1302732|date=March 2003|bibcode=2003BpJ....84.1616T}}</ref><ref>{{Cite journal|last1=Purohit|first1=Prashant K.|last2=Inamdar|first2=Mandar M.|last3=Grayson|first3=Paul D.|last4=Squires|first4=Todd M.|last5=Kondev|first5=Jané|last6=Phillips|first6=Rob|title=Forces during Bacteriophage DNA Packaging and Ejection|journal=Biophysical Journal|volume=88|issue=2|pages=851–866|doi=10.1529/biophysj.104.047134|pmid=15556983|pmc=1305160|year=2005|arxiv=q-bio/0406022|bibcode=2005BpJ....88..851P}}</ref> Many [[virus]]es are therefore little more than an organised collection of nucleoproteins with their binding sites pointing inwards. Structurally characterised viral nucleoproteins include [[Influenza A virus|influenza]],<ref>{{Cite journal|last1=Ng|first1=Andy Ka-Leung|last2=Wang|first2=Jia-Huai|last3=Shaw|first3=Pang-Chui|date=2009-05-27|title=Structure and sequence analysis of influenza A virus nucleoprotein|journal=Science in China Series C: Life Sciences|language=en|volume=52|issue=5|pages=439–449|doi=10.1007/s11427-009-0064-x|pmid=19471866|s2cid=610062|issn=1006-9305}}</ref> [[rabies virus|rabies]],<ref>{{Cite journal|last1=Albertini|first1=Aurélie A. V.|last2=Wernimont|first2=Amy K.|last3=Muziol|first3=Tadeusz|last4=Ravelli|first4=Raimond B. G.|last5=Clapier|first5=Cedric R.|last6=Schoehn|first6=Guy|last7=Weissenhorn|first7=Winfried|last8=Ruigrok|first8=Rob W. H.|date=2006-07-21|title=Crystal Structure of the Rabies Virus Nucleoprotein-RNA Complex|journal=Science|language=en|volume=313|issue=5785|pages=360–363|doi=10.1126/science.1125280|issn=0036-8075|pmid=16778023|bibcode=2006Sci...313..360A|s2cid=29937744|doi-access=free}}</ref> [[Ebola virus|Ebola]], [[Bunyamwera virus|Bunyamwera]],<ref name=":1">{{Cite journal|last1=Ariza|first1=A.|last2=Tanner|first2=S. J.|last3=Walter|first3=C. T.|last4=Dent|first4=K. C.|last5=Shepherd|first5=D. A.|last6=Wu|first6=W.|last7=Matthews|first7=S. V.|last8=Hiscox|first8=J. A.|last9=Green|first9=T. J.|date=2013-06-01|title=Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization|journal=Nucleic Acids Research|volume=41|issue=11|pages=5912–5926|doi=10.1093/nar/gkt268|issn=0305-1048|pmc=3675483|pmid=23595147}}</ref> [[Schmallenberg virus|Schmallenberg]],<ref name=":1" /> [[Hazara virus|Hazara]],<ref>{{Cite journal|last1=Surtees|first1=Rebecca|last2=Ariza|first2=Antonio|last3=Punch|first3=Emma K.|last4=Trinh|first4=Chi H.|last5=Dowall|first5=Stuart D.|last6=Hewson|first6=Roger|last7=Hiscox|first7=Julian A.|last8=Barr|first8=John N.|last9=Edwards|first9=Thomas A.|date=2015-01-01|title=The crystal structure of the Hazara virus nucleocapsid protein|journal=BMC Structural Biology|volume=15|pages=24|doi=10.1186/s12900-015-0051-3|issn=1472-6807|pmc=4696240|pmid=26715309 |doi-access=free }}</ref> [[Crimean–Congo hemorrhagic fever|Crimean-Congo hemorrhagic fever]],<ref>{{Cite journal|last1=Carter|first1=Stephen D.|last2=Surtees|first2=Rebecca|last3=Walter|first3=Cheryl T.|last4=Ariza|first4=Antonio|last5=Bergeron|first5=Éric|last6=Nichol|first6=Stuart T.|last7=Hiscox|first7=Julian A.|last8=Edwards|first8=Thomas A.|last9=Barr|first9=John N.|date=2012-10-15|title=Structure, Function, and Evolution of the Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein|journal=Journal of Virology|language=en|volume=86|issue=20|pages=10914–10923|doi=10.1128/JVI.01555-12|issn=0022-538X|pmc=3457148|pmid=22875964}}</ref> and [[Lassa virus|Lassa]].<ref>{{Cite journal|last1=Qi|first1=Xiaoxuan|last2=Lan|first2=Shuiyun|last3=Wang|first3=Wenjian|last4=Schelde|first4=Lisa McLay|last5=Dong|first5=Haohao|last6=Wallat|first6=Gregor D.|last7=Ly|first7=Hinh|last8=Liang|first8=Yuying|last9=Dong|first9=Changjiang|title=Cap binding and immune evasion revealed by Lassa nucleoprotein structure|journal=Nature|volume=468|issue=7325|pages=779–783|doi=10.1038/nature09605|pmc=3057469|pmid=21085117|year=2010|bibcode=2010Natur.468..779Q}}</ref>


== Deoxyribonucleoproteins ==
== Deoxyribonucleoproteins ==
Line 13: Line 15:


=== Functions ===
=== Functions ===
The most widespread deoxyribonucleoproteins are [[Nucleosome|nucleosomes]], in which the component is [[nuclear DNA]]. The proteins combined with DNA are [[Histone|histones]] and [[Protamine|protamines]]; the resulting nucleoproteins are located in [[Chromosome|chromosomes]]. Thus, the entire [[chromosome]], i.e. [[chromatin]] in [[eukaryotes]] consists of such nucleoproteins.<ref>Graeme K. Hunter G. K. (2000): Vital Forces. The discovery of the molecular basis of life. Academic Press, London 2000, {{ISBN|0-12-361811-8}}.</ref><ref>Nelson D. L., Michael M. Cox M. M. (2013): Lehninger Principles of Biochemistry. W. H. Freeman, {{ISBN|978-1-4641-0962-1}}.</ref>
The most widespread deoxyribonucleoproteins are [[nucleosome]]s, in which the component is [[nuclear DNA]]. The proteins combined with DNA are [[histone]]s and [[protamine]]s; the resulting nucleoproteins are located in [[chromosome]]s. Thus, the entire [[chromosome]], i.e. [[chromatin]] in [[eukaryotes]] consists of such nucleoproteins.<ref name="Graeme K. Hunter G. K. 2000"/><ref>Nelson D. L., Michael M. Cox M. M. (2013): Lehninger Principles of Biochemistry. W. H. Freeman, {{ISBN|978-1-4641-0962-1}}.</ref>


In eukaryotic cells, DNA is associated with about an equal mass of histone proteins in a highly condensed nucleoprotein complex called [[chromatin]].<ref name=":0">{{Cite book|title=Molecular Cell Biology|last=Lodish|first=Harvey|publisher=|year=|isbn=|location=|pages=}}</ref> Deoxyribonucleoproteins in this kind of complex interact to generate a multiprotein regulatory complex in which the intervening DNA is looped or wound. The deoxyribonucleoproteins participate in regulating DNA replication and transcription.<ref>{{Cite journal|last=Echols|first=Harrison|date=1990|title=Nucleoprotein structures initiating DNA replication, transcription, and site-specific recombination|url=|journal=The Journal of Biological Chemistry|volume=265|pages=14697–700|doi=|pmid=2203758}}</ref>
In eukaryotic cells, DNA is associated with about an equal mass of histone proteins in a highly condensed nucleoprotein complex called [[chromatin]].<ref name=":0">{{Cite book|title=Molecular Cell Biology|last=Lodish|first=Harvey}}</ref> Deoxyribonucleoproteins in this kind of complex interact to generate a multiprotein regulatory complex in which the intervening DNA is looped or wound. The deoxyribonucleoproteins participate in regulating DNA replication and transcription.<ref>{{Cite journal|last=Echols|first=Harrison|date=1990|title=Nucleoprotein structures initiating DNA replication, transcription, and site-specific recombination|journal=The Journal of Biological Chemistry|volume=265|issue=25|pages=14697–700|doi=10.1016/S0021-9258(18)77163-9|pmid=2203758|doi-access=free}}</ref>


Deoxyribonucleoproteins are also involved in [[homologous recombination]], a process for [[DNA repair|repairing DNA]] that appears to be nearly universal. A central intermediate step in this process is the interaction of multiple copies of a [[recombinase]] protein with single-stranded DNA to form a DNP filament. Recombinases employed in this process are produced by [[archaea]] (RadA recombinase)<ref name="pmid9573041">{{cite journal|vauthors=Seitz EM, Brockman JP, Sandler SJ, Clark AJ, Kowalczykowski SC|year=1998|title=RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange|url=|journal=Genes Dev.|volume=12|issue=9|pages=1248–53|doi=|pmc=316774|pmid=9573041}}</ref>, by bacteria (RecA recombinase)<ref name="pmid10716434">{{cite journal|vauthors=Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ|year=2000|title=The importance of repairing stalled replication forks|url=|journal=Nature|volume=404|issue=6773|pages=37–41|doi=10.1038/35003501|pmid=10716434}}</ref> and by eukaryotes from yeast to humans ([[Rad51]] and [[DMC1 (gene)|Dmc1]] recombinases).<ref name="pmid29382724">{{cite journal|vauthors=Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC|year=2018|title=Spontaneous self-segregation of Rad51 and Dmc1 DNA recombinases within mixed recombinase filaments|url=|journal=J. Biol. Chem.|volume=|issue=|pages=|doi=10.1074/jbc.RA117.001143|pmid=29382724}}</ref>
Deoxyribonucleoproteins are also involved in [[homologous recombination]], a process for [[DNA repair|repairing DNA]] that appears to be nearly universal. A central intermediate step in this process is the interaction of multiple copies of a [[recombinase]] protein with single-stranded DNA to form a DNP filament. Recombinases employed in this process are produced by [[archaea]] (RadA recombinase),<ref name="pmid9573041">{{cite journal|vauthors=Seitz EM, Brockman JP, Sandler SJ, Clark AJ, Kowalczykowski SC|year=1998|title=RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange|journal=Genes Dev.|volume=12|issue=9|pages=1248–53|doi=10.1101/gad.12.9.1248|pmc=316774|pmid=9573041}}</ref> by bacteria (RecA recombinase)<ref name="pmid10716434">{{cite journal|vauthors=Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ|year=2000|title=The importance of repairing stalled replication forks|journal=Nature|volume=404|issue=6773|pages=37–41|doi=10.1038/35003501|pmid=10716434|bibcode=2000Natur.404...37C|s2cid=4427794}}</ref> and by eukaryotes from yeast to humans ([[Rad51]] and [[DMC1 (gene)|Dmc1]] recombinases).<ref name="pmid29382724">{{cite journal|vauthors=Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC|year=2018|title=Spontaneous self-segregation of Rad51 and Dmc1 DNA recombinases within mixed recombinase filaments|journal=J. Biol. Chem.|volume=293|issue=11|pages=4191–4200|doi=10.1074/jbc.RA117.001143|pmid=29382724|pmc=5858004|doi-access=free}}</ref>


== Ribonucleoproteins ==
== Ribonucleoproteins ==
{{Main|Heterogeneous ribonucleoprotein particle}}
[[File:A-Ribonucleoprotein-Complex-Protects-the-Interleukin-6-mRNA-from-Degradation-by-Distinct-ppat.1004899.s011.ogv|thumb|[[Cell nucleus]] with DNA stained blue, and [[Nucleolin|nucleolin protein]] in red. The nucleolin protein binds some [[MRNA|mRNAs]] (e.g. mRNA for [[Interleukin-6]]). This protects those mRNAs from degradation by [[Kaposi's sarcoma-associated herpesvirus]] when infected. This RNA-nucleolin complex is then safely transported to the cytosol for translation by ribosomes to produce the Interleukin-6 protein, which is involved in [[Innate immune system|antiviral immune response]].<ref>{{Cite journal|last=Muller|first=Mandy|last2=Hutin|first2=Stephanie|last3=Marigold|first3=Oliver|last4=Li|first4=Kathy H.|last5=Burlingame|first5=Al|last6=Glaunsinger|first6=Britt A.|date=2015-05-12|title=A Ribonucleoprotein Complex Protects the Interleukin-6 mRNA from Degradation by Distinct Herpesviral Endonucleases|journal=PLoS Pathogens|volume=11|issue=5|pages=e1004899|doi=10.1371/journal.ppat.1004899|issn=1553-7366|pmc=4428876|pmid=25965334}}</ref>]]A [[ribonucleoprotein]] (RNP) is a complex of [[ribonucleic acid]] and RNA-binding [[protein]]. These complexes play an integral part in a number of important biological functions that include DNA replication, regulating gene expression<ref>{{Cite journal|last=Hogan|first=Daniel J|last2=Riordan|first2=Daniel P|last3=Gerber|first3=André P|last4=Herschlag|first4=Daniel|last5=Brown|first5=Patrick O|date=2016-11-07|title=Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System|journal=PLoS Biology|volume=6|issue=10|pages=e255|doi=10.1371/journal.pbio.0060255|issn=1544-9173|pmc=2573929|pmid=18959479}}</ref> and regulating the metabolism of RNA.<ref>{{Cite journal|last=Lukong|first=Kiven E.|last2=Chang|first2=Kai-wei|last3=Khandjian|first3=Edouard W.|last4=Richard|first4=Stéphane|date=2008-08-01|title=RNA-binding proteins in human genetic disease|journal=Trends in genetics: TIG|volume=24|issue=8|pages=416–425|doi=10.1016/j.tig.2008.05.004|issn=0168-9525|pmid=18597886}}</ref> A few examples of RNPs include the [[ribosome]], the enzyme [[telomerase]], [[Vault (organelle)|vault ribonucleoproteins]], [[RNase P]], [[hnRNP]] and small nuclear RNPs ([[snRNP]]s), which have been implicated in [[pre-mRNA]] [[RNA splicing|splicing]] ([[spliceosome]]) and are among the main components of the [[nucleolus]].<ref>{{Cite web|url=https://www.uniprot.org/keywords/KW-0687|title=Ribonucleoprotein|website=www.uniprot.org|access-date=2016-11-07}}</ref>Some viruses are simple ribonucleoproteins, containing only one molecule of RNA and a number of identical protein molecules. Others are ribonucleoprotein or deoxyribonucleoprotein complexes containing a number of different proteins, and exceptionally more nucleic acid molecules.<span></span>Currently, over 2000 RNPs can be found in the RCSB Protein Data Bank (PDB).<ref>{{Cite journal|last=Bank|first=RCSB Protein Data|title=RCSB Protein Data Bank - RCSB PDB|url=http://www.rcsb.org/pdb/home/home.do}}</ref> Furthermore, the Protein-RNA Interface Data Base (PRIDB) possesses a collection of information on RNA-protein interfaces based on data drawn from the PDB.<ref>{{Cite journal|last=Lewis|first=Benjamin A.|last2=Walia|first2=Rasna R.|last3=Terribilini|first3=Michael|last4=Ferguson|first4=Jeff|last5=Zheng|first5=Charles|last6=Honavar|first6=Vasant|last7=Dobbs|first7=Drena|date=2016-11-07|title=PRIDB: a protein–RNA interface database|journal=Nucleic Acids Research|volume=39|issue=Database issue|pages=D277–D282|doi=10.1093/nar/gkq1108|issn=0305-1048|pmc=3013700|pmid=21071426}}</ref> Some common features of protein-RNA interfaces were deduced based on known structures. For example, RNP in snRNPs have an RNA-binding [[Structural motif|motif]] in its RNA-binding protein. [[Aromaticity|Aromatic]] [[amino acid]] residues in this motif result in stacking interactions with RNA. [[Lysine]] residues in the [[Helix|helical]] portion of RNA-binding proteins help to stabilize interactions with nucleic acids. This nucleic acid binding is strengthened by [[Electrostatics|electrostatic]] attraction between the positive lysine [[Side chain|side chains]] and the negative [[nucleic acid]] [[phosphate]] backbones. Additionally, it is possible to [[Homology modeling|model]] RNPs computationally.<ref>{{Cite journal|last=Tuszynska|first=Irina|last2=Matelska|first2=Dorota|last3=Magnus|first3=Marcin|last4=Chojnowski|first4=Grzegorz|last5=Kasprzak|first5=Joanna M.|last6=Kozlowski|first6=Lukasz P.|last7=Dunin-Horkawicz|first7=Stanislaw|last8=Bujnicki|first8=Janusz M.|date=2014-02-01|title=Computational modeling of protein-RNA complex structures|journal=Methods (San Diego, Calif.)|volume=65|issue=3|pages=310–319|doi=10.1016/j.ymeth.2013.09.014|issn=1095-9130|pmid=24083976}}</ref> Although computational methods of deducing RNP structures are less accurate than experimental methods, they provide a rough model of the structure which allows for predictions of the identity of significant amino acids and nucleotide residues. Such information helps in understanding the overall function the RNP.[[File:Apical-Transport-of-Influenza-A-Virus-Ribonucleoprotein-Requires-Rab11-positive-Recycling-Endosome-pone.0021123.s011.ogv|thumb|Video of live cell imaging and tracking of cytoplasmic progeny vRNP signals of the influenza A virus. Results of the experiment suggest that the progeny vRNP uses Rab11-dependent RE machinery for apical plasma membrane trafficking.<ref>{{Cite journal|last=Momose|first=Fumitaka|last2=Sekimoto|first2=Tetsuya|last3=Ohkura|first3=Takashi|last4=Jo|first4=Shuichi|last5=Kawaguchi|first5=Atsushi|last6=Nagata|first6=Kyosuke|last7=Morikawa|first7=Yuko|date=2011-06-22|title=Apical Transport of Influenza A Virus Ribonucleoprotein Requires Rab11-positive Recycling Endosome|journal=PLoS ONE|volume=6|issue=6|pages=e21123|doi=10.1371/journal.pone.0021123|issn=1932-6203|pmc=3120830|pmid=21731653}}</ref>]]'RNP' can also refer to [[Ribonucleoprotein Particle|ribonucleoprotein particles]]. Ribonucleoprotein particles are distinct intracellular foci for [[post-transcriptional regulation]]. These particles play an important role in [[influenza A virus]] [[Viral replication|replication]].<ref>{{Cite journal|last=Baudin|first=F|last2=Bach|first2=C|last3=Cusack|first3=S|last4=Ruigrok|first4=R W|date=1994-07-01|title=Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent.|journal=The EMBO Journal|volume=13|issue=13|pages=3158–3165|issn=0261-4189|pmc=395207|pmid=8039508}}</ref> The influenza viral genome is composed of eight ribonucleoprotein particles formed by a complex of [[Negative-sense RNA|negative-sense]] RNA bound to a viral nucleoprotein. Each RNP carries with it an [[RNA polymerase]] complex. When the nucleoprotein binds to the [[Virus|viral]] [[RNA]], it is able to expose the nucleotide bases which allow the viral polymerase to [[Transcription (genetics)|transcribe]] RNA. At this point, once the virus enters a host cell it will be prepared to begin the process of replication.
{{See also|RNP world}}
[[File:A-Ribonucleoprotein-Complex-Protects-the-Interleukin-6-mRNA-from-Degradation-by-Distinct-ppat.1004899.s011.ogv|thumb|[[Cell nucleus]] with DNA stained blue, and [[Nucleolin|nucleolin protein]] in red. The nucleolin protein binds some [[mRNA]]s (e.g. mRNA for [[Interleukin-6]]). This protects those mRNAs from degradation by [[Kaposi's sarcoma-associated herpesvirus]] when infected. This RNA-nucleolin complex is then safely transported to the cytosol for translation by ribosomes to produce the Interleukin-6 protein, which is involved in [[Innate immune system|antiviral immune response]].<ref>{{Cite journal|last1=Muller|first1=Mandy|last2=Hutin|first2=Stephanie|last3=Marigold|first3=Oliver|last4=Li|first4=Kathy H.|last5=Burlingame|first5=Al|last6=Glaunsinger|first6=Britt A.|date=2015-05-12|title=A Ribonucleoprotein Complex Protects the Interleukin-6 mRNA from Degradation by Distinct Herpesviral Endonucleases|journal=PLOS Pathogens|volume=11|issue=5|pages=e1004899|doi=10.1371/journal.ppat.1004899|issn=1553-7366|pmc=4428876|pmid=25965334 |doi-access=free }}</ref>]]A '''ribonucleoprotein''' (RNP) is a complex of [[ribonucleic acid]] and [[RNA-binding protein]]. These complexes play an integral part in a number of important biological functions that include transcription, translation and regulating gene expression<ref>{{Cite journal|last1=Hogan|first1=Daniel J|last2=Riordan|first2=Daniel P|last3=Gerber|first3=André P|last4=Herschlag|first4=Daniel|last5=Brown|first5=Patrick O|date=2016-11-07|title=Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System|journal=PLOS Biology|volume=6|issue=10|pages=e255|doi=10.1371/journal.pbio.0060255|issn=1544-9173|pmc=2573929|pmid=18959479 |doi-access=free }}</ref> and regulating the metabolism of RNA.<ref>{{Cite journal|last1=Lukong|first1=Kiven E.|last2=Chang|first2=Kai-wei|last3=Khandjian|first3=Edouard W.|last4=Richard|first4=Stéphane|date=2008-08-01|title=RNA-binding proteins in human genetic disease|journal=Trends in Genetics|volume=24|issue=8|pages=416–425|doi=10.1016/j.tig.2008.05.004|issn=0168-9525|pmid=18597886}}</ref> A few examples of RNPs include the [[ribosome]], the enzyme [[telomerase]], [[Vault (organelle)|vault ribonucleoproteins]], [[RNase P]], [[hnRNP]] and small nuclear RNPs ([[snRNP]]s), which have been implicated in [[pre-mRNA]] [[RNA splicing|splicing]] ([[spliceosome]]) and are among the main components of the [[nucleolus]].<ref>{{Cite web|url=https://www.uniprot.org/keywords/KW-0687|title=Ribonucleoprotein|website=www.uniprot.org|access-date=2016-11-07}}</ref> Some viruses are simple ribonucleoproteins, containing only one molecule of RNA and a number of identical protein molecules. Others are ribonucleoprotein or deoxyribonucleoprotein complexes containing a number of different proteins, and exceptionally more nucleic acid molecules.{{citation needed|date=March 2024}} Currently, over 2000 RNPs can be found in the RCSB Protein Data Bank (PDB).<ref>{{Cite journal|last=Bank|first=RCSB Protein Data|title=RCSB Protein Data Bank - RCSB PDB|url=http://www.rcsb.org/pdb/home/home.do|access-date=2018-04-14|archive-url=https://web.archive.org/web/20150418160606/http://www.rcsb.org/pdb/home/home.do|archive-date=2015-04-18|url-status=dead}}</ref> Furthermore, the [[Protein-RNA interface database|Protein-RNA Interface Data Base]] (PRIDB) possesses a collection of information on RNA-protein interfaces based on data drawn from the PDB.<ref>{{Cite journal|last1=Lewis|first1=Benjamin A.|last2=Walia|first2=Rasna R.|last3=Terribilini|first3=Michael|last4=Ferguson|first4=Jeff|last5=Zheng|first5=Charles|last6=Honavar|first6=Vasant|last7=Dobbs|first7=Drena|date=2016-11-07|title=PRIDB: a protein–RNA interface database|journal=Nucleic Acids Research|volume=39|issue=Database issue|pages=D277–D282|doi=10.1093/nar/gkq1108|issn=0305-1048|pmc=3013700|pmid=21071426}}</ref> Some common features of protein-RNA interfaces were deduced based on known structures. For example, RNP in snRNPs have an RNA-binding [[Structural motif|motif]] in its RNA-binding protein. [[Aromaticity|Aromatic]] [[amino acid]] residues in this motif result in stacking interactions with RNA. [[Lysine]] residues in the [[Helix|helical]] portion of RNA-binding proteins help to stabilize interactions with nucleic acids. This nucleic acid binding is strengthened by [[Electrostatics|electrostatic]] attraction between the positive lysine [[side chain]]s and the negative [[nucleic acid]] [[phosphate]] backbones. Additionally, it is possible to [[Homology modeling|model]] RNPs computationally.<ref>{{Cite journal|last1=Tuszynska|first1=Irina|last2=Matelska|first2=Dorota|last3=Magnus|first3=Marcin|last4=Chojnowski|first4=Grzegorz|last5=Kasprzak|first5=Joanna M.|last6=Kozlowski|first6=Lukasz P.|last7=Dunin-Horkawicz|first7=Stanislaw|last8=Bujnicki|first8=Janusz M.|date=2014-02-01|title=Computational modeling of protein-RNA complex structures|journal=Methods|volume=65|issue=3|pages=310–319|doi=10.1016/j.ymeth.2013.09.014|issn=1095-9130|pmid=24083976|s2cid=37061678 }}</ref> Although computational methods of deducing RNP structures are less accurate than experimental methods, they provide a rough model of the structure which allows for predictions of the identity of significant amino acids and nucleotide residues. Such information helps in understanding the overall function the RNP.[[File:Apical-Transport-of-Influenza-A-Virus-Ribonucleoprotein-Requires-Rab11-positive-Recycling-Endosome-pone.0021123.s011.ogv|thumb|Cell infected with influenza A virus. Viral [[Ribonucleoprotein Particle|ribonucleoprotein particle]] proteins, stained white, hijack [[active transport]] via the [[Endosome#Plasma membrane to/from early endosomes (via recycling endosomes)|endosomes]] to move more rapidly within the cell than by simple [[diffusion]].<ref>{{Cite journal|last1=Momose|first1=Fumitaka|last2=Sekimoto|first2=Tetsuya|last3=Ohkura|first3=Takashi|last4=Jo|first4=Shuichi|last5=Kawaguchi|first5=Atsushi|last6=Nagata|first6=Kyosuke|last7=Morikawa|first7=Yuko|date=2011-06-22|title=Apical Transport of Influenza A Virus Ribonucleoprotein Requires Rab11-positive Recycling Endosome|journal=PLOS ONE|volume=6|issue=6|pages=e21123|doi=10.1371/journal.pone.0021123|issn=1932-6203|pmc=3120830|pmid=21731653|bibcode=2011PLoSO...621123M|doi-access=free}}</ref>]]'RNP' can also refer to [[Ribonucleoprotein Particle|ribonucleoprotein particles]]. Ribonucleoprotein particles are distinct intracellular foci for [[post-transcriptional regulation]]. These particles play an important role in [[influenza A virus]] [[Viral replication|replication]].<ref>{{Cite journal|last1=Baudin|first1=F|last2=Bach|first2=C|last3=Cusack|first3=S|last4=Ruigrok|first4=R W|date=1994-07-01|title=Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent.|journal=The EMBO Journal|volume=13|issue=13|pages=3158–3165|issn=0261-4189|pmc=395207|pmid=8039508|doi=10.1002/j.1460-2075.1994.tb06614.x}}</ref> The influenza viral genome is composed of eight ribonucleoprotein particles formed by a complex of [[negative-sense RNA]] bound to a viral nucleoprotein. Each RNP carries with it an [[RNA polymerase]] complex. When the nucleoprotein binds to the [[Virus|viral]] [[RNA]], it is able to expose the nucleotide bases which allow the viral polymerase to [[Transcription (genetics)|transcribe]] RNA. At this point, once the virus enters a host cell it will be prepared to begin the process of replication.


=== Anti-RNP antibodies ===
=== Anti-RNP antibodies ===
Line 28: Line 32:
The ribonucleoproteins play a role of protection. [[mRNA]]s never occur as free RNA molecules in the cell. They always associate with ribonucleoproteins and function as ribonucleoprotein complexes.<ref name=":0" />
The ribonucleoproteins play a role of protection. [[mRNA]]s never occur as free RNA molecules in the cell. They always associate with ribonucleoproteins and function as ribonucleoprotein complexes.<ref name=":0" />


In the same way, the genomes of negative-strand RNA viruses never exist as free RNA molecule. The ribonucleoproteins protect their genomes from [[RNase]].<ref>{{Cite journal|title = Nucleoproteins and nucleocapsids of negative-strand RNA viruses|url = http://linkinghub.elsevier.com/retrieve/pii/S1369527411000956|journal = Current Opinion in Microbiology|pages = 504–510|volume = 14|issue = 4|doi = 10.1016/j.mib.2011.07.011|first = Rob WH|last = Ruigrok|first2 = Thibaut|last2 = Crépin|first3 = Dan|last3 = Kolakofsky}}</ref> Nucleoproteins are often the major [[antigen]]s for viruses because they have strain-specific and group-specific [[antigenic determinant]]s.
In the same way, the genomes of negative-strand RNA viruses never exist as free RNA molecule. The ribonucleoproteins protect their genomes from [[RNase]].<ref>{{Cite journal|title = Nucleoproteins and nucleocapsids of negative-strand RNA viruses|journal = Current Opinion in Microbiology|pages = 504–510|volume = 14|issue = 4|doi = 10.1016/j.mib.2011.07.011|pmid = 21824806|first1 = Rob WH|last1 = Ruigrok|first2 = Thibaut|last2 = Crépin|first3 = Dan|last3 = Kolakofsky|year = 2011}}</ref> Nucleoproteins are often the major [[antigen]]s for viruses because they have strain-specific and group-specific [[antigenic determinant]]s.


==See also==
==See also==

*[[Protein–DNA interaction]]
*[[DNA-binding protein]]
*[[DNA-binding protein]]
*[[RNA-binding protein]]


==References==
==References==
Line 39: Line 44:
== External links ==
== External links ==


* [http://pridb.gdcb.iastate.edu/ PRIDB Protein-RNA Interface Database]
* [https://web.archive.org/web/20160304234021/http://pridb.gdcb.iastate.edu/ PRIDB Protein-RNA Interface Database]
{{RNA-binding proteins}}
{{RNA-binding proteins}}


Line 45: Line 50:


[[Category:Proteins]]
[[Category:Proteins]]


{{Cell-biology-stub}}

Latest revision as of 23:55, 6 March 2024

A nucleosome is a combination of DNA + histone proteins.

Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA).[1] Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins.

Structures

[edit]
Cross-sectional drawing of the Ebola virus particle, with structures of the major proteins shown and labelled on the right

Nucleoproteins tend to be positively charged, facilitating interaction with the negatively charged nucleic acid chains. The tertiary structures and biological functions of many nucleoproteins are understood.[2][3] Important techniques for determining the structures of nucleoproteins include X-ray diffraction, nuclear magnetic resonance and cryo-electron microscopy.

Viruses

[edit]

Virus genomes (either DNA or RNA) are extremely tightly packed into the viral capsid.[4][5] Many viruses are therefore little more than an organised collection of nucleoproteins with their binding sites pointing inwards. Structurally characterised viral nucleoproteins include influenza,[6] rabies,[7] Ebola, Bunyamwera,[8] Schmallenberg,[8] Hazara,[9] Crimean-Congo hemorrhagic fever,[10] and Lassa.[11]

Deoxyribonucleoproteins

[edit]

A deoxyribonucleoprotein (DNP) is a complex of DNA and protein.[12] The prototypical examples are nucleosomes, complexes in which genomic DNA is wrapped around clusters of eight histone proteins in eukaryotic cell nuclei to form chromatin. Protamines replace histones during spermatogenesis.

Functions

[edit]

The most widespread deoxyribonucleoproteins are nucleosomes, in which the component is nuclear DNA. The proteins combined with DNA are histones and protamines; the resulting nucleoproteins are located in chromosomes. Thus, the entire chromosome, i.e. chromatin in eukaryotes consists of such nucleoproteins.[2][13]

In eukaryotic cells, DNA is associated with about an equal mass of histone proteins in a highly condensed nucleoprotein complex called chromatin.[14] Deoxyribonucleoproteins in this kind of complex interact to generate a multiprotein regulatory complex in which the intervening DNA is looped or wound. The deoxyribonucleoproteins participate in regulating DNA replication and transcription.[15]

Deoxyribonucleoproteins are also involved in homologous recombination, a process for repairing DNA that appears to be nearly universal. A central intermediate step in this process is the interaction of multiple copies of a recombinase protein with single-stranded DNA to form a DNP filament. Recombinases employed in this process are produced by archaea (RadA recombinase),[16] by bacteria (RecA recombinase)[17] and by eukaryotes from yeast to humans (Rad51 and Dmc1 recombinases).[18]

Ribonucleoproteins

[edit]
Cell nucleus with DNA stained blue, and nucleolin protein in red. The nucleolin protein binds some mRNAs (e.g. mRNA for Interleukin-6). This protects those mRNAs from degradation by Kaposi's sarcoma-associated herpesvirus when infected. This RNA-nucleolin complex is then safely transported to the cytosol for translation by ribosomes to produce the Interleukin-6 protein, which is involved in antiviral immune response.[19]

A ribonucleoprotein (RNP) is a complex of ribonucleic acid and RNA-binding protein. These complexes play an integral part in a number of important biological functions that include transcription, translation and regulating gene expression[20] and regulating the metabolism of RNA.[21] A few examples of RNPs include the ribosome, the enzyme telomerase, vault ribonucleoproteins, RNase P, hnRNP and small nuclear RNPs (snRNPs), which have been implicated in pre-mRNA splicing (spliceosome) and are among the main components of the nucleolus.[22] Some viruses are simple ribonucleoproteins, containing only one molecule of RNA and a number of identical protein molecules. Others are ribonucleoprotein or deoxyribonucleoprotein complexes containing a number of different proteins, and exceptionally more nucleic acid molecules.[citation needed] Currently, over 2000 RNPs can be found in the RCSB Protein Data Bank (PDB).[23] Furthermore, the Protein-RNA Interface Data Base (PRIDB) possesses a collection of information on RNA-protein interfaces based on data drawn from the PDB.[24] Some common features of protein-RNA interfaces were deduced based on known structures. For example, RNP in snRNPs have an RNA-binding motif in its RNA-binding protein. Aromatic amino acid residues in this motif result in stacking interactions with RNA. Lysine residues in the helical portion of RNA-binding proteins help to stabilize interactions with nucleic acids. This nucleic acid binding is strengthened by electrostatic attraction between the positive lysine side chains and the negative nucleic acid phosphate backbones. Additionally, it is possible to model RNPs computationally.[25] Although computational methods of deducing RNP structures are less accurate than experimental methods, they provide a rough model of the structure which allows for predictions of the identity of significant amino acids and nucleotide residues. Such information helps in understanding the overall function the RNP.

Cell infected with influenza A virus. Viral ribonucleoprotein particle proteins, stained white, hijack active transport via the endosomes to move more rapidly within the cell than by simple diffusion.[26]

'RNP' can also refer to ribonucleoprotein particles. Ribonucleoprotein particles are distinct intracellular foci for post-transcriptional regulation. These particles play an important role in influenza A virus replication.[27] The influenza viral genome is composed of eight ribonucleoprotein particles formed by a complex of negative-sense RNA bound to a viral nucleoprotein. Each RNP carries with it an RNA polymerase complex. When the nucleoprotein binds to the viral RNA, it is able to expose the nucleotide bases which allow the viral polymerase to transcribe RNA. At this point, once the virus enters a host cell it will be prepared to begin the process of replication.

Anti-RNP antibodies

[edit]

Anti-RNP antibodies are autoantibodies associated with mixed connective tissue disease and are also detected in nearly 40% of Lupus erythematosus patients. Two types of anti-RNP antibodies are closely related to Sjögren's syndrome: SS-A (Ro) and SS-B (La). Autoantibodies against snRNP are called Anti-Smith antibodies and are specific for SLE. The presence of a significant level of anti-U1-RNP also serves a possible indicator of MCTD when detected in conjunction with several other factors.[28]

Functions

[edit]

The ribonucleoproteins play a role of protection. mRNAs never occur as free RNA molecules in the cell. They always associate with ribonucleoproteins and function as ribonucleoprotein complexes.[14]

In the same way, the genomes of negative-strand RNA viruses never exist as free RNA molecule. The ribonucleoproteins protect their genomes from RNase.[29] Nucleoproteins are often the major antigens for viruses because they have strain-specific and group-specific antigenic determinants.

See also

[edit]

References

[edit]
  1. ^ Nucleoproteins at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  2. ^ a b Graeme K. Hunter G. K. (2000): Vital Forces. The discovery of the molecular basis of life. Academic Press, London 2000, ISBN 0-12-361811-8.
  3. ^ Nelson D. L., Cox M. M. (2013): Lehninger Biochemie. Springer, ISBN 978-3-540-68637-8.
  4. ^ Tzlil, Shelly; Kindt, James T.; Gelbart, William M.; Ben-Shaul, Avinoam (March 2003). "Forces and Pressures in DNA Packaging and Release from Viral Capsids". Biophysical Journal. 84 (3): 1616–1627. Bibcode:2003BpJ....84.1616T. doi:10.1016/s0006-3495(03)74971-6. PMC 1302732. PMID 12609865.
  5. ^ Purohit, Prashant K.; Inamdar, Mandar M.; Grayson, Paul D.; Squires, Todd M.; Kondev, Jané; Phillips, Rob (2005). "Forces during Bacteriophage DNA Packaging and Ejection". Biophysical Journal. 88 (2): 851–866. arXiv:q-bio/0406022. Bibcode:2005BpJ....88..851P. doi:10.1529/biophysj.104.047134. PMC 1305160. PMID 15556983.
  6. ^ Ng, Andy Ka-Leung; Wang, Jia-Huai; Shaw, Pang-Chui (2009-05-27). "Structure and sequence analysis of influenza A virus nucleoprotein". Science in China Series C: Life Sciences. 52 (5): 439–449. doi:10.1007/s11427-009-0064-x. ISSN 1006-9305. PMID 19471866. S2CID 610062.
  7. ^ Albertini, Aurélie A. V.; Wernimont, Amy K.; Muziol, Tadeusz; Ravelli, Raimond B. G.; Clapier, Cedric R.; Schoehn, Guy; Weissenhorn, Winfried; Ruigrok, Rob W. H. (2006-07-21). "Crystal Structure of the Rabies Virus Nucleoprotein-RNA Complex". Science. 313 (5785): 360–363. Bibcode:2006Sci...313..360A. doi:10.1126/science.1125280. ISSN 0036-8075. PMID 16778023. S2CID 29937744.
  8. ^ a b Ariza, A.; Tanner, S. J.; Walter, C. T.; Dent, K. C.; Shepherd, D. A.; Wu, W.; Matthews, S. V.; Hiscox, J. A.; Green, T. J. (2013-06-01). "Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization". Nucleic Acids Research. 41 (11): 5912–5926. doi:10.1093/nar/gkt268. ISSN 0305-1048. PMC 3675483. PMID 23595147.
  9. ^ Surtees, Rebecca; Ariza, Antonio; Punch, Emma K.; Trinh, Chi H.; Dowall, Stuart D.; Hewson, Roger; Hiscox, Julian A.; Barr, John N.; Edwards, Thomas A. (2015-01-01). "The crystal structure of the Hazara virus nucleocapsid protein". BMC Structural Biology. 15: 24. doi:10.1186/s12900-015-0051-3. ISSN 1472-6807. PMC 4696240. PMID 26715309.
  10. ^ Carter, Stephen D.; Surtees, Rebecca; Walter, Cheryl T.; Ariza, Antonio; Bergeron, Éric; Nichol, Stuart T.; Hiscox, Julian A.; Edwards, Thomas A.; Barr, John N. (2012-10-15). "Structure, Function, and Evolution of the Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein". Journal of Virology. 86 (20): 10914–10923. doi:10.1128/JVI.01555-12. ISSN 0022-538X. PMC 3457148. PMID 22875964.
  11. ^ Qi, Xiaoxuan; Lan, Shuiyun; Wang, Wenjian; Schelde, Lisa McLay; Dong, Haohao; Wallat, Gregor D.; Ly, Hinh; Liang, Yuying; Dong, Changjiang (2010). "Cap binding and immune evasion revealed by Lassa nucleoprotein structure". Nature. 468 (7325): 779–783. Bibcode:2010Natur.468..779Q. doi:10.1038/nature09605. PMC 3057469. PMID 21085117.
  12. ^ Deoxyribonucleoproteins at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  13. ^ Nelson D. L., Michael M. Cox M. M. (2013): Lehninger Principles of Biochemistry. W. H. Freeman, ISBN 978-1-4641-0962-1.
  14. ^ a b Lodish, Harvey. Molecular Cell Biology.
  15. ^ Echols, Harrison (1990). "Nucleoprotein structures initiating DNA replication, transcription, and site-specific recombination". The Journal of Biological Chemistry. 265 (25): 14697–700. doi:10.1016/S0021-9258(18)77163-9. PMID 2203758.
  16. ^ Seitz EM, Brockman JP, Sandler SJ, Clark AJ, Kowalczykowski SC (1998). "RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange". Genes Dev. 12 (9): 1248–53. doi:10.1101/gad.12.9.1248. PMC 316774. PMID 9573041.
  17. ^ Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000). "The importance of repairing stalled replication forks". Nature. 404 (6773): 37–41. Bibcode:2000Natur.404...37C. doi:10.1038/35003501. PMID 10716434. S2CID 4427794.
  18. ^ Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC (2018). "Spontaneous self-segregation of Rad51 and Dmc1 DNA recombinases within mixed recombinase filaments". J. Biol. Chem. 293 (11): 4191–4200. doi:10.1074/jbc.RA117.001143. PMC 5858004. PMID 29382724.
  19. ^ Muller, Mandy; Hutin, Stephanie; Marigold, Oliver; Li, Kathy H.; Burlingame, Al; Glaunsinger, Britt A. (2015-05-12). "A Ribonucleoprotein Complex Protects the Interleukin-6 mRNA from Degradation by Distinct Herpesviral Endonucleases". PLOS Pathogens. 11 (5): e1004899. doi:10.1371/journal.ppat.1004899. ISSN 1553-7366. PMC 4428876. PMID 25965334.
  20. ^ Hogan, Daniel J; Riordan, Daniel P; Gerber, André P; Herschlag, Daniel; Brown, Patrick O (2016-11-07). "Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System". PLOS Biology. 6 (10): e255. doi:10.1371/journal.pbio.0060255. ISSN 1544-9173. PMC 2573929. PMID 18959479.
  21. ^ Lukong, Kiven E.; Chang, Kai-wei; Khandjian, Edouard W.; Richard, Stéphane (2008-08-01). "RNA-binding proteins in human genetic disease". Trends in Genetics. 24 (8): 416–425. doi:10.1016/j.tig.2008.05.004. ISSN 0168-9525. PMID 18597886.
  22. ^ "Ribonucleoprotein". www.uniprot.org. Retrieved 2016-11-07.
  23. ^ Bank, RCSB Protein Data. "RCSB Protein Data Bank - RCSB PDB". Archived from the original on 2015-04-18. Retrieved 2018-04-14. {{cite journal}}: Cite journal requires |journal= (help)
  24. ^ Lewis, Benjamin A.; Walia, Rasna R.; Terribilini, Michael; Ferguson, Jeff; Zheng, Charles; Honavar, Vasant; Dobbs, Drena (2016-11-07). "PRIDB: a protein–RNA interface database". Nucleic Acids Research. 39 (Database issue): D277–D282. doi:10.1093/nar/gkq1108. ISSN 0305-1048. PMC 3013700. PMID 21071426.
  25. ^ Tuszynska, Irina; Matelska, Dorota; Magnus, Marcin; Chojnowski, Grzegorz; Kasprzak, Joanna M.; Kozlowski, Lukasz P.; Dunin-Horkawicz, Stanislaw; Bujnicki, Janusz M. (2014-02-01). "Computational modeling of protein-RNA complex structures". Methods. 65 (3): 310–319. doi:10.1016/j.ymeth.2013.09.014. ISSN 1095-9130. PMID 24083976. S2CID 37061678.
  26. ^ Momose, Fumitaka; Sekimoto, Tetsuya; Ohkura, Takashi; Jo, Shuichi; Kawaguchi, Atsushi; Nagata, Kyosuke; Morikawa, Yuko (2011-06-22). "Apical Transport of Influenza A Virus Ribonucleoprotein Requires Rab11-positive Recycling Endosome". PLOS ONE. 6 (6): e21123. Bibcode:2011PLoSO...621123M. doi:10.1371/journal.pone.0021123. ISSN 1932-6203. PMC 3120830. PMID 21731653.
  27. ^ Baudin, F; Bach, C; Cusack, S; Ruigrok, R W (1994-07-01). "Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent". The EMBO Journal. 13 (13): 3158–3165. doi:10.1002/j.1460-2075.1994.tb06614.x. ISSN 0261-4189. PMC 395207. PMID 8039508.
  28. ^ "Mixed Connective Tissue Disease (MCTD) | Cleveland Clinic". my.clevelandclinic.org. Retrieved 2016-11-07.
  29. ^ Ruigrok, Rob WH; Crépin, Thibaut; Kolakofsky, Dan (2011). "Nucleoproteins and nucleocapsids of negative-strand RNA viruses". Current Opinion in Microbiology. 14 (4): 504–510. doi:10.1016/j.mib.2011.07.011. PMID 21824806.
[edit]