Jump to content

Vapor pressure: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 188.196.95.104 (talk) to last version by EpicPupper
Copy editing
Tags: Mobile edit Mobile web edit Advanced mobile edit
 
(44 intermediate revisions by 33 users not shown)
Line 1: Line 1:
{{Short description|Pressure exterted by a vapor in thermodynamic equilibrium}}
{{Short description|Pressure exerted by a vapor in thermodynamic equilibrium}}
[[File:Vapor pressure.svg|thumb|The microscopic process of evaporation and condensation at the liquid surface.]]
[[File:Vapor pressure.svg|thumb|The microscopic process of evaporation and condensation at the liquid surface.]]
[[File:Vapor pressure being used in a cloud chamber.jpg|thumb|If vapor pressure exceeds the [[thermodynamic equilibrium]] value, [[condensation]] occurs in presence of [[nucleation]] sites. This principle is indigenous in [[cloud chamber]]s, where [[ionizing radiation|ionized]] [[particles]] form [[condensation]] tracks when passing through.]]
[[File:Vapor pressure being used in a cloud chamber.jpg|thumb|If vapor pressure exceeds the [[thermodynamic equilibrium]] value, [[condensation]] occurs in presence of [[nucleation]] sites. This principle is indigenous in [[cloud chamber]]s, where [[ionizing radiation|ionized]] [[particles]] form [[condensation]] tracks when passing through.]]
[[File:02.Пиштол епрувета со алкохол.ogv|thumb|right|280px|The ''pistol test tube'' experiment. The tube contains [[ethanol|alcohol]] and is closed with a piece of cork. By heating the alcohol, the vapors fill in the space, increasing the pressure in the tube to the point of the cork popping out.]]
[[File:02.Пиштол епрувета со алкохол.ogv|thumb|right|280px|The ''pistol test tube'' experiment. The tube contains [[ethanol|alcohol]] and is closed with a piece of cork. By heating the alcohol, the vapors fill in the space, increasing the pressure in the tube to the point of the cork popping out.]]
{{Use American English|date=September 2019}}


'''Vapor pressure'''{{efn|Spelled '''vapour pressure''' in the UK; [[American and British English spelling differences#-our, -or|see spelling differences]].}} or '''equilibrium vapor pressure''' is the [[pressure]] exerted by a [[vapor]] in [[thermodynamic equilibrium]] with its [[condensation|condensed]] [[phase (matter)|phase]]s (solid or liquid) at a given temperature in a [[thermodynamic system#Closed system|closed system]]. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid (or solid) in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as ''[[volatility (chemistry)|volatile]]''. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.
{{Use American English|date = September 2019}}


The vapor pressure of any substance increases non-linearly with temperature, often described by the [[Clausius–Clapeyron relation]]. The [[atmospheric pressure]] [[boiling point]] of a liquid (also known as the [[normal boiling point]]) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome [[atmospheric pressure]] and cause the liquid to form vapor bubbles. [[Liquid bubble|Bubble]] formation in greater depths of liquid requires a slightly higher temperature due to the higher fluid pressure, due to hydrostatic pressure of the fluid mass above. More important at shallow depths is the higher temperature required to start bubble formation. The surface tension of the bubble wall leads to an overpressure in the very small initial bubbles.
'''Vapor pressure''' (or vapour pressure in [[British English]]; [[American and British English spelling differences#-our, -or|see spelling differences]]) or '''equilibrium vapor pressure''' is defined as the [[pressure]] exerted by a [[vapor]] in [[thermodynamic equilibrium]] with its [[Condensation|condensed]] [[Phase (matter)|phase]]s (solid or liquid) at a given temperature in a [[Thermodynamic system#Closed system|closed system]]. The equilibrium vapor pressure is an indication of a liquid's [[evaporation]] rate. It relates to the tendency of particles to escape from the liquid (or a solid). A substance with a high vapor pressure at normal temperatures is often referred to as ''[[volatility (chemistry)|volatile]]''. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the kinetic energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, thereby increasing the vapor pressure.


The vapor pressure that a single component in a mixture contributes to the total pressure in the system is called its [[partial pressure]]. For example, air at sea level, and saturated with water vapor at 20 °C, has partial pressures of about 2.3 kPa of water, 78 kPa of [[nitrogen]], 21 kPa of [[oxygen]] and 0.9 kPa of [[argon]], totaling 102.2 kPa, making the basis for [[atmosphere (unit)|standard atmospheric pressure]].
The vapor pressure of any substance increases non-linearly with temperature according to the [[Clausius–Clapeyron relation]]. The [[atmospheric pressure]] [[boiling point]] of a liquid (also known as the [[normal boiling point]]) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome [[atmospheric pressure]] and lift the liquid to form vapor bubbles inside the bulk of the substance. [[liquid bubble|Bubble]] formation deeper in the liquid requires a higher temperature due to the higher fluid pressure, because fluid pressure increases above the atmospheric pressure as the depth increases. More important at shallow depths is the higher temperature required to start bubble formation. The surface tension of the bubble wall leads to an overpressure in the very small, initial bubbles.

The vapor pressure that a single component in a mixture contributes to the total pressure in the system is called [[partial pressure]]. For example, air at sea level, and saturated with water vapor at 20 °C, has partial pressures of about 2.3 kPa of water, 78 kPa of [[nitrogen]], 21 kPa of [[oxygen]] and 0.9 kPa of [[argon]], totaling 102.2 kPa, making the basis for [[atmosphere (unit)|standard atmospheric pressure]].


==Measurement and units==
==Measurement and units==
Vapor pressure is measured in the standard units of [[pressure]]. The [[International System of Units]] (SI) recognizes pressure as a [[SI derived unit|derived unit]] with the dimension of force per area and designates the [[pascal (unit)|pascal]] (Pa) as its standard unit. One pascal is one [[newton (unit)|newton]] per [[square meter]] (N·m<sup>−2</sup> or kg·m<sup>−1</sup>·s<sup>−2</sup>).
Vapor pressure is measured in the standard units of [[pressure]]. The [[International System of Units]] (SI) recognizes pressure as a [[SI derived unit|derived unit]] with the dimension of force per area and designates the [[pascal (unit)|pascal]] (Pa) as its standard unit. One pascal is one [[newton (unit)|newton]] per [[square meter]] (N·m<sup>−2</sup> or kg·m<sup>−1</sup>·s<sup>−2</sup>).


Experimental measurement of vapor pressure is a simple procedure for common pressures between 1 and 200 kPa.<ref>{{cite web |url=http://www.capec.kt.dtu.dk/documents/overview/Vapor-pressure-Ruzicka.pdf |title=Vapor Pressure of Organic Compounds. Measurement and Correlation |author1=Růžička, K. |author2=Fulem, M. |author3=Růžička, V. |name-list-style=amp |access-date=2009-10-18 |archive-url=https://web.archive.org/web/20101226095004/http://www.capec.kt.dtu.dk/documents/overview/Vapor-pressure-Ruzicka.pdf |archive-date=2010-12-26 |url-status=dead }}</ref> Most accurate results are obtained near the boiling point of substances and large errors result for measurements smaller than {{gaps|1|kPa}}. Procedures often consist of purifying the test substance, isolating it in a container, evacuating any foreign gas, then measuring the equilibrium pressure of the gaseous phase of the substance in the container at different temperatures. Better accuracy is achieved when care is taken to ensure that the entire substance and its vapor are at the prescribed temperature. This is often done, as with the use of an [[isoteniscope]], by submerging the containment area in a liquid bath.
Experimental measurement of vapor pressure is a simple procedure for common pressures between 1 and 200 kPa.<ref>{{cite web |url=http://www.capec.kt.dtu.dk/documents/overview/Vapor-pressure-Ruzicka.pdf |title=Vapor Pressure of Organic Compounds. Measurement and Correlation |author1=Růžička, K. |author2=Fulem, M. |author3=Růžička, V. |name-list-style=amp |access-date=2009-10-18 |archive-url=https://web.archive.org/web/20101226095004/http://www.capec.kt.dtu.dk/documents/overview/Vapor-pressure-Ruzicka.pdf |archive-date=2010-12-26 |url-status=dead}}</ref> The most accurate results are obtained near the boiling point of the substance; measurements smaller than {{gaps|1|kPa}} are subject to major errors. Procedures often consist of purifying the test substance, isolating it in a container, evacuating any foreign gas, then measuring the equilibrium pressure of the gaseous phase of the substance in the container at different temperatures. Better accuracy is achieved when care is taken to ensure that the entire substance and its vapor are both at the prescribed temperature. This is often done, as with the use of an [[isoteniscope]], by submerging the containment area in a liquid bath.


Very low vapor pressures of solids can be measured using the [[Knudsen effusion cell]] method.
Very low vapor pressures of solids can be measured using the [[Knudsen effusion cell]] method.


In a medical context, vapor pressure is sometimes expressed in other units, specifically [[Millimeter of mercury|millimeters of mercury (mmHg)]]. This is important for [[volatile anesthetics]], most of which are liquids at body temperature, but with a relatively high vapor pressure.
In a medical context, vapor pressure is sometimes expressed in other units, specifically [[millimetre of mercury|millimeters of mercury (mmHg)]]. Accurate knowledge of the vapor pressure is important for volatile [[inhalational anesthetic]]s, most of which are liquids at body temperature but have a relatively high vapor pressure.


==Estimating vapor pressures with Antoine equation==
==Estimating vapor pressures with Antoine equation==


The [[Antoine equation]]<ref name=frostburg>[http://antoine.frostburg.edu/chem/senese/101/liquids/faq/antoine-vapor-pressure.shtml What is the Antoine Equation?] (Chemistry Department, [[Frostburg State University]], [[Maryland]])</ref><ref name=Sinnot>{{cite book|author=Sinnot, R.K.|title=Chemical Engineering Design]|edition=4th|publisher=Butterworth-Heinemann|year=2005|page=331|isbn=978-0-7506-6538-4|url=https://books.google.com/books?id=DJaxUL3numgC&pg=PA331 }}</ref> is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature. The basic form of the equation is:
The [[Antoine equation]]<ref name=frostburg>[http://antoine.frostburg.edu/chem/senese/101/liquids/faq/antoine-vapor-pressure.shtml What is the Antoine Equation?] (Chemistry Department, [[Frostburg State University]], [[Maryland]])</ref><ref name=Sinnot>{{cite book |author=Sinnot, R.K. |title=Chemical Engineering Design] |edition=4th |publisher=Butterworth-Heinemann |year=2005 |page=331 |isbn=978-0-7506-6538-4 |url=https://books.google.com/books?id=DJaxUL3numgC&pg=PA331}}</ref> is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature. The basic form of the equation is:
:<math display="block">\log P = A-\frac{B}{C+T}</math>

:<math>\log P = A-\frac{B}{C+T}</math>


and it can be transformed into this temperature-explicit form:
and it can be transformed into this temperature-explicit form:
:<math display="block">T = \frac{B}{A-\log P} - C</math>

:<math>T = \frac{B}{A-\log P} - C</math>


where:
where:
: <span style="vertical-align:+12%;"><math>P</math></span> is the absolute vapor pressure of a substance<br>
* <math>P</math> is the absolute vapor pressure of a substance
: <span style="vertical-align:+15%;"><span style="vertical-align:+12%;"><math>T</math></span> is the temperature of the substance</span>
* <math>T</math> is the temperature of the substance
: <span style="vertical-align:+12%;"><math>A</math></span>, <span style="vertical-align:+12%;"><math>B</math></span> and <span style="vertical-align:+12%;"><math>C</math></span> are substance-specific coefficients (i.e., constants or parameters)
* <math>A</math>, <math>B</math> and <math>C</math> are substance-specific coefficients (i.e., constants or parameters)
: <span style="vertical-align:-30%;"><math>\log</math> is typically either <math>\log_{10}</math> or <math>\log_e</math></span><ref name=Sinnot/>
* <span style="vertical-align:-30%;"><math>\log</math> is typically either <math>\log_{10}</math> or <math>\log_e</math></span><ref name=Sinnot/>


A simpler form of the equation with only two coefficients is sometimes used:
A simpler form of the equation with only two coefficients is sometimes used:
:<math display="block">\log P = A- \frac{B}{T}</math>

:<math>\log P = A-\frac{B}{T}</math>


which can be transformed to:
which can be transformed to:
:<math display="block">T = \frac{B}{A-\log P}</math>

:<math>T = \frac{B}{A-\log P}</math>


Sublimations and vaporizations of the same substance have separate sets of Antoine coefficients, as do components in mixtures.<ref name=frostburg/> Each parameter set for a specific compound is only applicable over a specified temperature range. Generally, temperature ranges are chosen to maintain the equation's accuracy of a few up to 8–10 percent. For many volatile substances, several different sets of parameters are available and used for different temperature ranges. The Antoine equation has poor accuracy with any single parameter set when used from a compound's melting point to its critical temperature. Accuracy is also usually poor when vapor pressure is under 10 Torr because of the limitations of the apparatus{{citation needed|date=January 2020}} used to establish the Antoine parameter values.
Sublimations and vaporizations of the same substance have separate sets of Antoine coefficients, as do components in mixtures.<ref name=frostburg/> Each parameter set for a specific compound is only applicable over a specified temperature range. Generally, temperature ranges are chosen to maintain the equation's accuracy of a few up to 8–10 percent. For many volatile substances, several different sets of parameters are available and used for different temperature ranges. The Antoine equation has poor accuracy with any single parameter set when used from a compound's melting point to its critical temperature. Accuracy is also usually poor when vapor pressure is under 10 Torr because of the limitations of the apparatus{{citation needed|date=January 2020}} used to establish the Antoine parameter values.


The Wagner equation<ref>{{Citation|last= Wagner|first= W.|title= New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations|journal= Cryogenics|volume= 13|issue= 8|pages= 470–482 |year= 1973|doi= 10.1016/0011-2275(73)90003-9|bibcode = 1973Cryo...13..470W }}</ref> gives "one of the best"<ref>Perry's Chemical Engineers' Handbook, 7th Ed. pp. 4–15</ref> fits to experimental data but is quite complex. It expresses reduced vapor pressure as a function of reduced temperature.
The Wagner equation<ref>{{citation |last=Wagner |first=W. |title=New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations |journal=Cryogenics |volume=13 |issue=8 |pages=470–482 |year=1973 |doi=10.1016/0011-2275(73)90003-9 |bibcode=1973Cryo...13..470W}}</ref> gives "one of the best"<ref>Perry's Chemical Engineers' Handbook, 7th Ed. pp. 4–15</ref> fits to experimental data but is quite complex. It expresses reduced vapor pressure as a function of reduced temperature.


==Relation to boiling point of liquids==
==Relation to boiling point of liquids==
{{further|Boiling point}}
{{Further|Boiling point}}
[[Image:vapor_pressure_chart.svg|thumb|right|A log-lin vapor pressure chart for various liquids]]
[[File:Vapor pressure chart.svg|thumb|right|A log-lin vapor pressure chart for various liquids]]
As a general trend, vapor pressures of liquids at ambient temperatures increase with decreasing boiling points. This is illustrated in the vapor pressure chart (see right) that shows graphs of the '''vapor pressures versus temperatures''' for a variety of liquids.<ref>{{cite book|editor=Perry, R.H. |editor2=Green, D.W. |title=Perry's Chemical Engineers' Handbook|edition=7th|publisher=McGraw-Hill|year=1997|isbn= 978-0-07-049841-9|title-link=Perry's Chemical Engineers' Handbook }}</ref> At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere,<ref>{{cite book|author=Petrucci, Ralph H. |author2=Harwood, William S. |author3=Herring, F.Geoffrey |title=General Chemistry |url=https://archive.org/details/generalchemistry00hill |url-access=registration |edition=8th|publisher=Prentice Hall|year=2002|isbn= 978-0-13-014329-7|page=[https://archive.org/details/generalchemistry00hill/page/484 484]}}</ref> 760{{nbsp}}Torr, 101.325{{nbsp}}kPa, or 14.69595{{nbsp}}psi.
As a general trend, vapor pressures of liquids at ambient temperatures increase with decreasing boiling points. This is illustrated in the vapor pressure chart (see right) that shows graphs of the '''vapor pressures versus temperatures''' for a variety of liquids.<ref>{{cite book |editor=Perry, R.H. |editor2=Green, D.W. |title=Perry's Chemical Engineers' Handbook |edition=7th |publisher=McGraw-Hill |year=1997 |isbn=978-0-07-049841-9 |title-link=Perry's Chemical Engineers' Handbook}}</ref> At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere,<ref>{{cite book |author=Petrucci, Ralph H. |author2=Harwood, William S. |author3=Herring, F.Geoffrey |title=General Chemistry |url=https://archive.org/details/generalchemistry00hill |url-access=registration |edition=8th |publisher=Prentice Hall |year=2002 |isbn=978-0-13-014329-7 |page=[https://archive.org/details/generalchemistry00hill/page/484 484]}}</ref> 760{{nbsp}}Torr, 101.325{{nbsp}}kPa, or 14.69595{{nbsp}}psi.


For example, at any given temperature, [[methyl chloride]] has the highest vapor pressure of any of the liquids in the chart. It also has the lowest normal boiling point (−24.2&nbsp;°C), which is where the vapor pressure curve of methyl chloride (the blue line) intersects the horizontal pressure line of one atmosphere ([[Atmosphere (unit)|atm]]) of absolute vapor pressure.
For example, at any given temperature, [[methyl chloride]] has the highest vapor pressure of any of the liquids in the chart. It also has the lowest normal boiling point at {{Convert|−24.2|°C}}, which is where the vapor pressure curve of methyl chloride (the blue line) intersects the horizontal pressure line of one atmosphere ([[Atmosphere (unit)|atm]]) of absolute vapor pressure.


Although the relation between vapor pressure and temperature is non-linear, the chart uses a logarithmic vertical axis to produce slightly curved lines, so one chart can graph many liquids. A nearly straight line is obtained when the logarithm of the vapor pressure is plotted against 1/(T + 230)<ref>{{cite news|author1=Dreisbach, R. R. |author2=Spencer, R. S. |name-list-style=amp | title=Infinite Points of Cox Chart Families and dt/dP Values at any Pressure|journal=Industrial and Engineering Chemistry|volume=41|number=1|page=176|date= 1949|doi=10.1021/ie50469a040}}</ref> where T is the temperature in degrees Celsius. The vapor pressure of a liquid at its boiling point equals the pressure of its surrounding environment.
Although the relation between vapor pressure and temperature is non-linear, the chart uses a logarithmic vertical axis to produce slightly curved lines, so one chart can graph many liquids. A nearly straight line is obtained when the logarithm of the vapor pressure is plotted against 1/(T + 230)<ref>{{cite journal |author1=Dreisbach, R. R. |author2=Spencer, R. S. |name-list-style=amp |title=Infinite Points of Cox Chart Families and dt/dP Values at any Pressure |journal=Industrial and Engineering Chemistry |volume=41 |number=1 |page=176 |date=1949 |doi=10.1021/ie50469a040}}</ref> where T is the temperature in degrees Celsius. The vapor pressure of a liquid at its boiling point equals the pressure of its surrounding environment.


==Liquid mixtures: Raoult's law==
==Liquid mixtures: Raoult's law==
[[Raoult's law]] gives an approximation to the vapor pressure of mixtures of liquids. It states that the activity (pressure or [[fugacity]]) of a single-phase mixture is equal to the mole-fraction-weighted sum of the components' vapor pressures:
[[Raoult's law]] gives an approximation to the vapor pressure of mixtures of liquids. It states that the activity (pressure or [[fugacity]]) of a single-phase mixture is equal to the mole-fraction-weighted sum of the components' vapor pressures:

:<math> P_{\rm tot} =\sum_i P y_i = \sum_i P_i^{\rm sat} x_i \,</math>
:<math> P_{\rm tot} =\sum_i P y_i = \sum_i P_i^{\rm sat} x_i \,</math>


where <math>P_{\rm tot}</math> is the mixture's vapor pressure, <math>x_i</math> is the [[mole fraction]] of component <math>i</math> in the liquid phase and <math>y
where <math>P_{\rm tot}</math> is the mixture's vapor pressure, <math>x_i</math> is the [[mole fraction]] of component <math>i</math> in the liquid phase and <math>y_i</math> is the [[mole fraction]] of component <math>i</math> in the vapor phase respectively. <math>P_i^{\rm sat}</math> is the vapor pressure of component <math>i</math>. Raoult's law is applicable only to non-electrolytes (uncharged species); it is most appropriate for non-polar molecules with only weak intermolecular attractions (such as [[London force]]s).
_i</math> is the [[mole fraction]] of component <math>i</math> in the vapor phase respectively. <math>P_i^{\rm sat}</math> is the vapor pressure of component <math>i</math>. Raoult's law is applicable only to non-electrolytes (uncharged species); it is most appropriate for non-polar molecules with only weak intermolecular attractions (such as [[London force]]s).


Systems that have vapor pressures higher than indicated by the above formula are said to have positive deviations. Such a deviation suggests weaker intermolecular attraction than in the pure components, so that the molecules can be thought of as being "held in" the liquid phase less strongly than in the pure liquid. An example is the [[azeotrope]] of approximately 95% ethanol and water. Because the azeotrope's vapor pressure is higher than predicted by Raoult's law, it boils at a temperature below that of either pure component.
Systems that have vapor pressures higher than indicated by the above formula are said to have positive deviations. Such a deviation suggests weaker intermolecular attraction than in the pure components, so that the molecules can be thought of as being "held in" the liquid phase less strongly than in the pure liquid. An example is the [[azeotrope]] of approximately 95% ethanol and water. Because the azeotrope's vapor pressure is higher than predicted by Raoult's law, it boils at a temperature below that of either pure component.
Line 73: Line 66:


==Solids==
==Solids==
[[Image:Vapor Pressure Curve of Liquid and Solid Benzene.png|thumb|300px|Vapor pressure of liquid and solid benzene]]
[[File:Vapor Pressure Curve of Liquid and Solid Benzene.png|thumb|upright=1.25|Vapor pressure of liquid and solid benzene]]
Equilibrium vapor pressure can be defined as the pressure reached when a condensed phase is in equilibrium with its own vapor. In the case of an equilibrium solid, such as a [[crystal]], this can be defined as the pressure when the rate of [[sublimation (physics)|sublimation]] of a solid matches the rate of deposition of its vapor phase. For most solids this pressure is very low, but some notable exceptions are [[naphthalene]], [[dry ice]] (the vapor pressure of dry ice is 5.73 MPa (831 psi, 56.5 atm) at 20&nbsp;°C, which causes most sealed containers to rupture), and ice. All solid materials have a vapor pressure. However, due to their often extremely low values, measurement can be rather difficult. Typical techniques include the use of [[thermogravimetry]] and gas transpiration.
Equilibrium vapor pressure can be defined as the pressure reached when a condensed phase is in equilibrium with its own vapor. In the case of an equilibrium solid, such as a [[crystal]], this can be defined as the pressure when the rate of [[sublimation (physics)|sublimation]] of a solid matches the rate of deposition of its vapor phase. For most solids this pressure is very low, but some notable exceptions are [[naphthalene]], [[dry ice]] (the vapor pressure of dry ice is 5.73 MPa (831 psi, 56.5 atm) at 20&nbsp;°C, which causes most sealed containers to rupture), and ice. All solid materials have a vapor pressure. However, due to their often extremely low values, measurement can be rather difficult. Typical techniques include the use of [[thermogravimetry]] and gas transpiration.


There are a number of methods for calculating the sublimation pressure (i.e., the vapor pressure) of a solid. One method is to estimate the sublimation pressure from extrapolated liquid vapor pressures (of the supercooled liquid), if the [[Enthalpy of fusion|heat of fusion]] is known, by using this particular form of the Clausius–Clapeyron relation:<ref name="Moller">{{cite journal|author1=Moller B. |author2=Rarey J. |author3=Ramjugernath D. |title=Estimation of the vapour pressure of non-electrolyte organic compounds via group contributions and group interactions|journal=Journal of Molecular Liquids|volume=143|pages=52–63|doi=10.1016/j.molliq.2008.04.020 |year=2008}}</ref>
There are a number of methods for calculating the sublimation pressure (i.e., the vapor pressure) of a solid. One method is to estimate the sublimation pressure from extrapolated liquid vapor pressures (of the supercooled liquid), if the [[enthalpy of fusion|heat of fusion]] is known, by using this particular form of the Clausius–Clapeyron relation:<ref name="Moller">{{cite journal |author1=Moller B. |author2=Rarey J. |author3=Ramjugernath D. |title=Estimation of the vapour pressure of non-electrolyte organic compounds via group contributions and group interactions |journal=Journal of Molecular Liquids |volume=143 |pages=52–63 |doi=10.1016/j.molliq.2008.04.020 |year=2008}}</ref>

:<math>\ln\,P^{\rm sub}_{\rm s} = \ln\,P^{\rm sub}_{\rm l} - \frac{\Delta_{\rm fus}H}{R} \left( \frac{1}{T_{\rm sub}} - \frac{1}{T_{\rm fus}} \right)</math>
:<math>\ln\,P^{\rm sub}_{\rm s} = \ln\,P^{\rm sub}_{\rm l} - \frac{\Delta_{\rm fus}H}{R} \left( \frac{1}{T_{\rm sub}} - \frac{1}{T_{\rm fus}} \right)</math>


where:
where:

* <math>P^{\rm sub}_{\rm s}</math> is the sublimation pressure of the solid component at the temperature <math> T_{\rm sub} < T_{\rm fus} </math>.
* <math>P^{\rm sub}_{\rm s}</math> is the sublimation pressure of the solid component at the temperature <math> T_{\rm sub} < T_{\rm fus} </math>.
* <math> P^{\rm sub}_{\rm l}</math> is the extrapolated vapor pressure of the liquid component at the temperature <math> T_{\rm sub} < T_{\rm fus} </math>.
* <math> P^{\rm sub}_{\rm l}</math> is the extrapolated vapor pressure of the liquid component at the temperature <math> T_{\rm sub} < T_{\rm fus} </math>.
Line 92: Line 83:


==Boiling point of water==
==Boiling point of water==
[[Image:Water vapor pressure graph.jpg|thumb|right|Graph of water vapor pressure versus temperature. At the normal boiling point of 100{{nbsp}}°C, it equals the standard atmospheric pressure of 760{{nbsp}}[[Torr]] or 101.325{{nbsp}}[[kPa]].]]
[[File:Water vapor pressure graph.jpg|thumb|Graph of water vapor pressure versus temperature. At the normal boiling point of 100{{nbsp}}°C, it equals the standard atmospheric pressure of 760{{nbsp}}[[torr]] or 101.325{{nbsp}}[[kPa]].]]
{{main|Vapor pressure of water}}
{{Main|Vapour pressure of water}}
Like all liquids, water boils when its vapor pressure reaches its surrounding pressure. In nature, the atmospheric pressure is lower at higher elevations and water boils at a lower temperature. The boiling temperature of water for atmospheric pressures can be approximated by the [[Antoine equation]]:
Like all liquids, water boils when its vapor pressure reaches its surrounding pressure. In nature, the atmospheric pressure is lower at higher elevations and water boils at a lower temperature. The boiling temperature of water for atmospheric pressures can be approximated by the [[Antoine equation]]:

:<math>\log_{10}\left(\frac{P}{1\text{ Torr}}\right) = 8.07131 - \frac{1730.63\ {}^\circ\text{C}}{233.426\ {}^\circ\text{C} + T_b}</math>
:<math>\log_{10}\left(\frac{P}{1\text{ Torr}}\right) = 8.07131 - \frac{1730.63\ {}^\circ\text{C}}{233.426\ {}^\circ\text{C} + T_b}</math>


or transformed into this temperature-explicit form:
or transformed into this temperature-explicit form:

:<math>T_b = \frac{1730.63\ {}^\circ\text{C}}{8.07131 - \log_{10}\left(\frac{P}{1\text{ Torr}}\right)} - 233.426\ {}^\circ\text{C}</math>
:<math>T_b = \frac{1730.63\ {}^\circ\text{C}}{8.07131 - \log_{10}\left(\frac{P}{1\text{ Torr}}\right)} - 233.426\ {}^\circ\text{C}</math>


where the temperature <math>T_b</math> is the boiling point in degrees [[Celsius]] and the pressure <math>P</math> is in [[Torr]].
where the temperature <math>T_b</math> is the boiling point in degrees [[Celsius]] and the pressure <math>P</math> is in [[torr]].


==Dühring's rule==
==Dühring's rule==
{{main|Dühring's rule}}
{{Main|Dühring's rule}}
Dühring's rule states that a linear relationship exists between the temperatures at which two solutions exert the same vapor pressure.
Dühring's rule states that a linear relationship exists between the temperatures at which two solutions exert the same vapor pressure.


Line 113: Line 102:
! rowspan=2 | Substance
! rowspan=2 | Substance
! colspan=3 | Vapor pressure
! colspan=3 | Vapor pressure
! rowspan=2 | Temperature <br/>(°C)
! rowspan=2 | Temperature<br/>(°C)
|-
|-
! (Pa)
! (Pa)
! (bar)
! (bar)
! (mmHg)
! (mmHg)
|-

| Octaethylene glycol<ref>{{cite journal |author1=Krieger, Ulrich K. |author2=Siegrist, Franziska |author3=Marcolli, Claudia |author4=Emanuelsson, Eva U. |author5=Gøbel, Freya M. |author6=Bilde, Merete |title=A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols |journal=[[Atmospheric Measurement Techniques]] |date=8 January 2018 |volume=11 |issue=1 |pages=49–63 |doi=10.5194/amt-11-49-2018 |url=https://amt.copernicus.org/articles/11/49/2018/amt-11-49-2018.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://amt.copernicus.org/articles/11/49/2018/amt-11-49-2018.pdf |archive-date=2022-10-09 |url-status=live |access-date=7 April 2022 |publisher=[[Copernicus Publications]] |bibcode=2018AMT....11...49K |s2cid=41910898 |issn=1867-1381 |doi-access=free }}</ref>
| 9.2×10<sup>−8</sup> Pa
| 9.2×10<sup>−13</sup>
| 6.9×10<sup>−10</sup>
| 89.85
|-

| [[Glycerol]]
| 0.4 Pa
| 0.000004
| 0.003
| 50
|-

| [[Mercury (element)|Mercury]]
| 1 Pa
| 0.00001
| 0.0075
| 41.85
|-
|-


| [[Tungsten]]
| [[Tungsten]]
| 100 Pa
| 1 Pa
| 0.001
| 0.00001
| 0.75
| 0.0075
| 3203
| 3203
|-
|-
Line 148: Line 158:
|-
|-


| [[Methyl isobutyl ketone]]
| [[Methyl isobutyl ketone]]
| 2.66 kPa
| 2.66 kPa
| 0.0266
| 0.0266
| 19.95
| 19.95
| 25
| 25
|-

| [[Iron pentacarbonyl]]
| 2.80 kPa
| 0.028
| 21
| 20
|-
|-


Line 162: Line 179:
|-
|-


| [[Freon|Freon 113]]
| [[Freon|Freon 113]]
| 37.9 kPa
| 37.9 kPa
| 0.379
| 0.379
Line 170: Line 187:


| [[Acetaldehyde]]
| [[Acetaldehyde]]
| 98.7 kPa
| 98.7 kPa
| 0.987
| 0.987
| 740
| 740
| 20
| 20
|-
|-
Line 190: Line 207:
|-
|-


| [[Propane]]<ref>[https://www.nist.gov/data/PDFfiles/jpcrd331.pdf "''Thermophysical Properties Of Fluids II – Methane, Ethane, Propane, Isobutane, And Normal Butane''"] (page 110 of PDF, page 686 of original document), BA Younglove and JF Ely.</ref>
| [[Propane]]<ref>[https://www.nist.gov/data/PDFfiles/jpcrd331.pdf "''Thermophysical Properties Of Fluids II – Methane, Ethane, Propane, Isobutane, And Normal Butane''"] {{Webarchive|url=https://web.archive.org/web/20161221135455/http://nist.gov/data/PDFfiles/jpcrd331.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://nist.gov/data/PDFfiles/jpcrd331.pdf |archive-date=2022-10-09 |url-status=live |date=2016-12-21}} (page 110 of PDF, page 686 of original document), BA Younglove and JF Ely.</ref>
| 997.8 kPa
| 997.8 kPa
| 9.978
| 9.978
Line 198: Line 215:


| [[Carbonyl sulfide]]
| [[Carbonyl sulfide]]
| 1.255 MPa
| 1.255 MPa
| 12.55
| 12.55
| 9412
| 9412
| 25
| 25
|-
|-


Line 219: Line 236:


==Estimating vapor pressure from molecular structure==
==Estimating vapor pressure from molecular structure==
Several empirical methods exist to estimate the vapor pressure from molecular structure for organic molecules. Some examples are SIMPOL.1 method,<ref>{{cite journal|author=Pankow, J. F. |title=SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds|journal=Atmos. Chem. Phys.|volume=8|issue=10|pages=2773–2796|year=2008|doi=10.5194/acp-8-2773-2008|display-authors=etal|doi-access=free}}</ref> the method of Moller et al.,<ref name = "Moller" /> and EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects).<ref>{{Cite web|url=http://tropo.aeronomie.be/models/evaporation_run.htm|title=Vapour pressure of Pure Liquid Organic Compounds: Estimation by EVAPORATION|date=11 June 2014|website=Tropospheric Chemistry Modelling at BIRA-IASB|access-date=2018-11-26}}</ref><ref>{{cite journal|author=Compernolle, S. |title=EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions|journal=Atmos. Chem. Phys.|volume=11|issue=18|pages=9431–9450|year=2011|url=http://www.atmos-chem-phys.net/11/9431/2011/acp-11-9431-2011.html|doi=10.5194/acp-11-9431-2011|bibcode = 2011ACP....11.9431C |display-authors=etal|doi-access=free}}</ref>
Several empirical methods exist to estimate the vapor pressure from molecular structure for organic molecules. Some examples are SIMPOL.1 method,<ref>{{cite journal |author=Pankow, J. F. |title=SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds |journal=Atmos. Chem. Phys. |volume=8 |issue=10 |pages=2773–2796 |year=2008 |doi=10.5194/acp-8-2773-2008 |bibcode=2008ACP.....8.2773P |display-authors=etal |doi-access=free}}</ref> the method of Moller et al.,<ref name="Moller"/> and EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects).<ref>{{cite web |url=http://tropo.aeronomie.be/models/evaporation_run.htm |title=Vapour pressure of Pure Liquid Organic Compounds: Estimation by EVAPORATION |date=11 June 2014 |website=Tropospheric Chemistry Modelling at BIRA-IASB |access-date=2018-11-26}}</ref><ref>{{cite journal |author=Compernolle, S. |title=EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions |journal=Atmos. Chem. Phys. |volume=11 |issue=18 |pages=9431–9450 |year=2011 |url=http://www.atmos-chem-phys.net/11/9431/2011/acp-11-9431-2011.html |doi=10.5194/acp-11-9431-2011 |bibcode=2011ACP....11.9431C |display-authors=etal |doi-access=free}}</ref>


==Meaning in meteorology==
==Meaning in meteorology==
In [[meteorology]], the term '''vapor pressure''' means the [[vapour pressure of water|partial pressure of water vapor]] in the atmosphere, even if it is not in equilibrium.<ref name="ams glossary vapor pressure">
In [[meteorology]], the term ''vapor pressure'' is used to mean the partial pressure of [[water vapor]] in the atmosphere, even if it is not in equilibrium,<ref>[http://amsglossary.allenpress.com/glossary/search?id=vapor-pressure1 Glossary] {{webarchive|url=https://web.archive.org/web/20110415075010/http://amsglossary.allenpress.com/glossary/search?id=vapor-pressure1 |date=2011-04-15 }} (Developed by the [[American Meteorological Society]])</ref> and the ''equilibrium vapor pressure'' is specified otherwise. Meteorologists also use the term ''saturation vapor pressure'' to refer to the equilibrium vapor pressure of water or [[brine]] above a flat surface, to distinguish it from equilibrium vapor pressure, which takes into account the shape and size of water droplets and particulates in the atmosphere.<ref>[http://fermi.jhuapl.edu/people/babin/vapor/index.html A Brief Tutorial]. jhuapl.edu (An article about the definition of equilibrium vapor pressure)</ref>
{{cite encyclopedia |url=https://glossary.ametsoc.org/wiki/Vapor_pressure |title=vapor pressure |date=2012 |access-date=2022-11-28 |encyclopedia=Glossary of Meteorology |author=American Meteorological Society |author-link=American Meteorological Society}}
</ref> This differs from its meaning in other sciences.<ref name="ams glossary vapor pressure"/>
According to the [[American Meteorological Society]] ''Glossary of Meteorology'', '''saturation vapor pressure''' properly refers to the equilibrium vapor pressure of water above a flat surface of liquid water or solid ice, and is a function only of temperature and whether the condensed phase is liquid or solid.<ref name="ams glossary saturation vapor pressure">{{cite encyclopedia |title=saturation vapor pressure |url=https://glossary.ametsoc.org/wiki/Saturation_vapor_pressure |date=2020 |access-date=2022-11-28 |encyclopedia=Glossary of Meteorology |author=American Meteorological Society |author-link=American Meteorological Society}}</ref>
[[Relative humidity]] is defined relative to saturation vapor pressure.<ref name="Babin"/>
'''Equilibrium vapor pressure''' does not require the condensed phase to be a flat surface; it might consist of tiny droplets possibly containing solutes (impurities), such as a [[cloud]].<ref name="ams glossary equilibrium vapor pressure"/><ref name="Babin"/> Equilibrium vapor pressure may differ significantly from saturation vapor pressure depending on the size of droplets and presence of other particles which act as [[cloud condensation nuclei]].<ref name="ams glossary equilibrium vapor pressure">{{cite encyclopedia |title=equilibrium vapor pressure |date=2012 |url=https://glossary.ametsoc.org/wiki/Equilibrium_vapor_pressure |access-date=2022-11-28 |encyclopedia=Glossary of Meteorology |author=American Meteorological Society |author-link=American Meteorological Society}}</ref><ref name="Babin"/>

However, these terms are used inconsistently, and some authors use ''"saturation vapor pressure"'' outside the narrow meaning given by the AMS ''Glossary''. For example, a text on [[atmospheric convection]] states, "The [[Kelvin effect]] causes the <u>saturation vapor pressure</u> over the curved surface of the droplet to be greater than that over a flat water surface" (emphasis added).<ref>{{cite book |last=Raymond |first=David J. |publisher=[[New Mexico Institute of Mining and Technology]] |title=Atmospheric Convection |chapter=Chapter 5: Cloud Microphysics |page=73 |chapter-url=http://kestrel.nmt.edu/~raymond/classes/ph536/notes/microphys.pdf |archive-url=https://web.archive.org/web/20170329103831/http://kestrel.nmt.edu/~raymond/classes/ph536/notes/microphys.pdf |archive-date=2017-03-29 |url-status=live |date=2011-05-12 |access-date=2022-11-28}}</ref>

The still-current term ''saturation vapor pressure'' derives from the obsolete theory that water vapor dissolves into air, and that air at a given temperature can only hold a certain amount of water before becoming "saturated".<ref name="Babin"/> Actually, as stated by [[Dalton's law]] (known since 1802), the partial pressure of water vapor or any substance does not depend on air at all, and the relevant temperature is that of the liquid.<ref name="Babin"/> Nevertheless, the erroneous belief persists among the public and even meteorologists, aided by the misleading terms ''saturation pressure'' and ''supersaturation'' and the related definition of ''relative humidity''.<ref name="Babin">
{{cite web |url=https://fermi.jhuapl.edu/people/babin/vapor/vapor.html |title=Relative Humidity & Saturation Vapor Pressure: A Brief Tutorial |last=Babin |first=Steven M. |publisher=[[Johns Hopkins University Applied Physics Laboratory]] |date=1998 |archive-url=https://web.archive.org/web/19980713043127/http://fermi.jhuapl.edu/people/babin/vapor/vapor.html |archive-date=1998-07-13 |url-status=live |access-date=2022-11-28}} (Alternate title: "Water Vapor Myths: A Brief Tutorial".)
</ref>


==See also==
==See also==
* [[Vapour pressure of water]]
* [[Absolute humidity]]
* [[Absolute humidity]]
* [[Antoine equation]]
* [[Antoine equation]]
* [[Lee–Kesler method]]
* [[Lee–Kesler method]]
* [[Osmotic coefficient]]
* [[Raoult's law]]: vapor pressure lowering in solution
* [[Raoult's law]]: vapor pressure lowering in solution
* [[Reid vapor pressure]]
* [[Reid vapor pressure]]
Line 234: Line 262:
* [[Relative volatility]]
* [[Relative volatility]]
* [[Saturation vapor density]]
* [[Saturation vapor density]]
* [[Osmotic coefficient]]
* [[Triple point]]
* [[Triple point]]
* [[True vapor pressure]]
* [[True vapor pressure]]
* [[Vapor–liquid equilibrium]]
* [[Vapor–liquid equilibrium]]
* [[Vapor pressures of the elements (data page)]]
* [[Vapor pressures of the elements (data page)]]
* [[Vapour pressure of water]]
* [[High-pressure chemistry]]


==Notes==
{{Notelist}}


==References==
==References==
Line 244: Line 277:


==External links==
==External links==
*[http://www.engineersedge.com/fluid_flow/fluid_data.htm Fluid Characteristics Chart]
*[https://www.engineersedge.com/fluid_flow/fluid_data.htm Fluid Characteristics Chart], Engineer's Edge
*[http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/vappre.html#c2 Hyperphysics]
*[http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/vappre.html#c2 Vapor Pressure], Hyperphysics
*[http://www.ilpi.com/msds/ref/vaporpressure.html MSDS Vapor Pressure]
*[http://www.ilpi.com/msds/ref/vaporpressure.html Vapor Pressure], The MSDS HyperGlossary
*[http://www.envmodels.com/freetools.php?menu=pression Online vapor pressure calculation tool (Requires Registration)]
*[https://www.envmodels.com/freetools.php?menu=pression Online vapor pressure calculation tool (Requires Registration)]
*[http://www.aim.env.uea.ac.uk/aim/ddbst/pcalc_main.php Prediction of Vapor Pressures of Pure Liquid Organic Compounds]
*[http://www.aim.env.uea.ac.uk/aim/ddbst/pcalc_main.php Prediction of Vapor Pressures of Pure Liquid Organic Compounds]


{{Authority control}}
{{Authority control}}

[[Category:Thermodynamic properties]]
[[Category:Engineering thermodynamics]]
[[Category:Engineering thermodynamics]]
[[Category:Meteorological concepts]]
[[Category:Gases]]
[[Category:Gases]]
[[Category:Meteorological concepts]]
[[Category:Meteorological quantities]]
[[Category:Pressure]]
[[Category:Pressure]]
[[Category:Thermodynamic properties]]

Latest revision as of 18:17, 27 May 2024

The microscopic process of evaporation and condensation at the liquid surface.
If vapor pressure exceeds the thermodynamic equilibrium value, condensation occurs in presence of nucleation sites. This principle is indigenous in cloud chambers, where ionized particles form condensation tracks when passing through.
The pistol test tube experiment. The tube contains alcohol and is closed with a piece of cork. By heating the alcohol, the vapors fill in the space, increasing the pressure in the tube to the point of the cork popping out.

Vapor pressure[a] or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid (or solid) in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.

The vapor pressure of any substance increases non-linearly with temperature, often described by the Clausius–Clapeyron relation. The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and cause the liquid to form vapor bubbles. Bubble formation in greater depths of liquid requires a slightly higher temperature due to the higher fluid pressure, due to hydrostatic pressure of the fluid mass above. More important at shallow depths is the higher temperature required to start bubble formation. The surface tension of the bubble wall leads to an overpressure in the very small initial bubbles.

The vapor pressure that a single component in a mixture contributes to the total pressure in the system is called its partial pressure. For example, air at sea level, and saturated with water vapor at 20 °C, has partial pressures of about 2.3 kPa of water, 78 kPa of nitrogen, 21 kPa of oxygen and 0.9 kPa of argon, totaling 102.2 kPa, making the basis for standard atmospheric pressure.

Measurement and units

[edit]

Vapor pressure is measured in the standard units of pressure. The International System of Units (SI) recognizes pressure as a derived unit with the dimension of force per area and designates the pascal (Pa) as its standard unit. One pascal is one newton per square meter (N·m−2 or kg·m−1·s−2).

Experimental measurement of vapor pressure is a simple procedure for common pressures between 1 and 200 kPa.[1] The most accurate results are obtained near the boiling point of the substance; measurements smaller than 1kPa are subject to major errors. Procedures often consist of purifying the test substance, isolating it in a container, evacuating any foreign gas, then measuring the equilibrium pressure of the gaseous phase of the substance in the container at different temperatures. Better accuracy is achieved when care is taken to ensure that the entire substance and its vapor are both at the prescribed temperature. This is often done, as with the use of an isoteniscope, by submerging the containment area in a liquid bath.

Very low vapor pressures of solids can be measured using the Knudsen effusion cell method.

In a medical context, vapor pressure is sometimes expressed in other units, specifically millimeters of mercury (mmHg). Accurate knowledge of the vapor pressure is important for volatile inhalational anesthetics, most of which are liquids at body temperature but have a relatively high vapor pressure.

Estimating vapor pressures with Antoine equation

[edit]

The Antoine equation[2][3] is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature. The basic form of the equation is:

and it can be transformed into this temperature-explicit form:

where:

  • is the absolute vapor pressure of a substance
  • is the temperature of the substance
  • , and are substance-specific coefficients (i.e., constants or parameters)
  • is typically either or [3]

A simpler form of the equation with only two coefficients is sometimes used:

which can be transformed to:

Sublimations and vaporizations of the same substance have separate sets of Antoine coefficients, as do components in mixtures.[2] Each parameter set for a specific compound is only applicable over a specified temperature range. Generally, temperature ranges are chosen to maintain the equation's accuracy of a few up to 8–10 percent. For many volatile substances, several different sets of parameters are available and used for different temperature ranges. The Antoine equation has poor accuracy with any single parameter set when used from a compound's melting point to its critical temperature. Accuracy is also usually poor when vapor pressure is under 10 Torr because of the limitations of the apparatus[citation needed] used to establish the Antoine parameter values.

The Wagner equation[4] gives "one of the best"[5] fits to experimental data but is quite complex. It expresses reduced vapor pressure as a function of reduced temperature.

Relation to boiling point of liquids

[edit]
A log-lin vapor pressure chart for various liquids

As a general trend, vapor pressures of liquids at ambient temperatures increase with decreasing boiling points. This is illustrated in the vapor pressure chart (see right) that shows graphs of the vapor pressures versus temperatures for a variety of liquids.[6] At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere,[7] 760 Torr, 101.325 kPa, or 14.69595 psi.

For example, at any given temperature, methyl chloride has the highest vapor pressure of any of the liquids in the chart. It also has the lowest normal boiling point at −24.2 °C (−11.6 °F), which is where the vapor pressure curve of methyl chloride (the blue line) intersects the horizontal pressure line of one atmosphere (atm) of absolute vapor pressure.

Although the relation between vapor pressure and temperature is non-linear, the chart uses a logarithmic vertical axis to produce slightly curved lines, so one chart can graph many liquids. A nearly straight line is obtained when the logarithm of the vapor pressure is plotted against 1/(T + 230)[8] where T is the temperature in degrees Celsius. The vapor pressure of a liquid at its boiling point equals the pressure of its surrounding environment.

Liquid mixtures: Raoult's law

[edit]

Raoult's law gives an approximation to the vapor pressure of mixtures of liquids. It states that the activity (pressure or fugacity) of a single-phase mixture is equal to the mole-fraction-weighted sum of the components' vapor pressures:

where is the mixture's vapor pressure, is the mole fraction of component in the liquid phase and is the mole fraction of component in the vapor phase respectively. is the vapor pressure of component . Raoult's law is applicable only to non-electrolytes (uncharged species); it is most appropriate for non-polar molecules with only weak intermolecular attractions (such as London forces).

Systems that have vapor pressures higher than indicated by the above formula are said to have positive deviations. Such a deviation suggests weaker intermolecular attraction than in the pure components, so that the molecules can be thought of as being "held in" the liquid phase less strongly than in the pure liquid. An example is the azeotrope of approximately 95% ethanol and water. Because the azeotrope's vapor pressure is higher than predicted by Raoult's law, it boils at a temperature below that of either pure component.

There are also systems with negative deviations that have vapor pressures that are lower than expected. Such a deviation is evidence for stronger intermolecular attraction between the constituents of the mixture than exists in the pure components. Thus, the molecules are "held in" the liquid more strongly when a second molecule is present. An example is a mixture of trichloromethane (chloroform) and 2-propanone (acetone), which boils above the boiling point of either pure component.

The negative and positive deviations can be used to determine thermodynamic activity coefficients of the components of mixtures.

Solids

[edit]
Vapor pressure of liquid and solid benzene

Equilibrium vapor pressure can be defined as the pressure reached when a condensed phase is in equilibrium with its own vapor. In the case of an equilibrium solid, such as a crystal, this can be defined as the pressure when the rate of sublimation of a solid matches the rate of deposition of its vapor phase. For most solids this pressure is very low, but some notable exceptions are naphthalene, dry ice (the vapor pressure of dry ice is 5.73 MPa (831 psi, 56.5 atm) at 20 °C, which causes most sealed containers to rupture), and ice. All solid materials have a vapor pressure. However, due to their often extremely low values, measurement can be rather difficult. Typical techniques include the use of thermogravimetry and gas transpiration.

There are a number of methods for calculating the sublimation pressure (i.e., the vapor pressure) of a solid. One method is to estimate the sublimation pressure from extrapolated liquid vapor pressures (of the supercooled liquid), if the heat of fusion is known, by using this particular form of the Clausius–Clapeyron relation:[9]

where:

  • is the sublimation pressure of the solid component at the temperature .
  • is the extrapolated vapor pressure of the liquid component at the temperature .
  • is the heat of fusion.
  • is the gas constant.
  • is the sublimation temperature.
  • is the melting point temperature.

This method assumes that the heat of fusion is temperature-independent, ignores additional transition temperatures between different solid phases, and it gives a fair estimation for temperatures not too far from the melting point. It also shows that the sublimation pressure is lower than the extrapolated liquid vapor pressure (ΔfusH > 0) and the difference grows with increased distance from the melting point.

Boiling point of water

[edit]
Graph of water vapor pressure versus temperature. At the normal boiling point of 100 °C, it equals the standard atmospheric pressure of 760 torr or 101.325 kPa.

Like all liquids, water boils when its vapor pressure reaches its surrounding pressure. In nature, the atmospheric pressure is lower at higher elevations and water boils at a lower temperature. The boiling temperature of water for atmospheric pressures can be approximated by the Antoine equation:

or transformed into this temperature-explicit form:

where the temperature is the boiling point in degrees Celsius and the pressure is in torr.

Dühring's rule

[edit]

Dühring's rule states that a linear relationship exists between the temperatures at which two solutions exert the same vapor pressure.

Examples

[edit]

The following table is a list of a variety of substances ordered by increasing vapor pressure (in absolute units).

Substance Vapor pressure Temperature
(°C)
(Pa) (bar) (mmHg)
Octaethylene glycol[10] 9.2×10−8 Pa 9.2×10−13 6.9×10−10 89.85
Glycerol 0.4 Pa 0.000004 0.003 50
Mercury 1 Pa 0.00001 0.0075 41.85
Tungsten 1 Pa 0.00001 0.0075 3203
Xenon difluoride 600 Pa 0.006 4.50 25
Water (H2O) 2.3 kPa 0.023 17.5 20
Propanol 2.4 kPa 0.024 18.0 20
Methyl isobutyl ketone 2.66 kPa 0.0266 19.95 25
Iron pentacarbonyl 2.80 kPa 0.028 21 20
Ethanol 5.83 kPa 0.0583 43.7 20
Freon 113 37.9 kPa 0.379 284 20
Acetaldehyde 98.7 kPa 0.987 740 20
Butane 220 kPa 2.2 1650 20
Formaldehyde 435.7 kPa 4.357 3268 20
Propane[11] 997.8 kPa 9.978 7584 26.85
Carbonyl sulfide 1.255 MPa 12.55 9412 25
Nitrous oxide[12] 5.660 MPa 56.60 42453 25
Carbon dioxide 5.7 MPa 57 42753 20

Estimating vapor pressure from molecular structure

[edit]

Several empirical methods exist to estimate the vapor pressure from molecular structure for organic molecules. Some examples are SIMPOL.1 method,[13] the method of Moller et al.,[9] and EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects).[14][15]

Meaning in meteorology

[edit]

In meteorology, the term vapor pressure means the partial pressure of water vapor in the atmosphere, even if it is not in equilibrium.[16] This differs from its meaning in other sciences.[16] According to the American Meteorological Society Glossary of Meteorology, saturation vapor pressure properly refers to the equilibrium vapor pressure of water above a flat surface of liquid water or solid ice, and is a function only of temperature and whether the condensed phase is liquid or solid.[17] Relative humidity is defined relative to saturation vapor pressure.[18] Equilibrium vapor pressure does not require the condensed phase to be a flat surface; it might consist of tiny droplets possibly containing solutes (impurities), such as a cloud.[19][18] Equilibrium vapor pressure may differ significantly from saturation vapor pressure depending on the size of droplets and presence of other particles which act as cloud condensation nuclei.[19][18]

However, these terms are used inconsistently, and some authors use "saturation vapor pressure" outside the narrow meaning given by the AMS Glossary. For example, a text on atmospheric convection states, "The Kelvin effect causes the saturation vapor pressure over the curved surface of the droplet to be greater than that over a flat water surface" (emphasis added).[20]

The still-current term saturation vapor pressure derives from the obsolete theory that water vapor dissolves into air, and that air at a given temperature can only hold a certain amount of water before becoming "saturated".[18] Actually, as stated by Dalton's law (known since 1802), the partial pressure of water vapor or any substance does not depend on air at all, and the relevant temperature is that of the liquid.[18] Nevertheless, the erroneous belief persists among the public and even meteorologists, aided by the misleading terms saturation pressure and supersaturation and the related definition of relative humidity.[18]

See also

[edit]


Notes

[edit]
  1. ^ Spelled vapour pressure in the UK; see spelling differences.

References

[edit]
  1. ^ Růžička, K.; Fulem, M. & Růžička, V. "Vapor Pressure of Organic Compounds. Measurement and Correlation" (PDF). Archived from the original (PDF) on 2010-12-26. Retrieved 2009-10-18.
  2. ^ a b What is the Antoine Equation? (Chemistry Department, Frostburg State University, Maryland)
  3. ^ a b Sinnot, R.K. (2005). Chemical Engineering Design] (4th ed.). Butterworth-Heinemann. p. 331. ISBN 978-0-7506-6538-4.
  4. ^ Wagner, W. (1973), "New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations", Cryogenics, 13 (8): 470–482, Bibcode:1973Cryo...13..470W, doi:10.1016/0011-2275(73)90003-9
  5. ^ Perry's Chemical Engineers' Handbook, 7th Ed. pp. 4–15
  6. ^ Perry, R.H.; Green, D.W., eds. (1997). Perry's Chemical Engineers' Handbook (7th ed.). McGraw-Hill. ISBN 978-0-07-049841-9.
  7. ^ Petrucci, Ralph H.; Harwood, William S.; Herring, F.Geoffrey (2002). General Chemistry (8th ed.). Prentice Hall. p. 484. ISBN 978-0-13-014329-7.
  8. ^ Dreisbach, R. R. & Spencer, R. S. (1949). "Infinite Points of Cox Chart Families and dt/dP Values at any Pressure". Industrial and Engineering Chemistry. 41 (1): 176. doi:10.1021/ie50469a040.
  9. ^ a b Moller B.; Rarey J.; Ramjugernath D. (2008). "Estimation of the vapour pressure of non-electrolyte organic compounds via group contributions and group interactions". Journal of Molecular Liquids. 143: 52–63. doi:10.1016/j.molliq.2008.04.020.
  10. ^ Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete (8 January 2018). "A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols" (PDF). Atmospheric Measurement Techniques. 11 (1). Copernicus Publications: 49–63. Bibcode:2018AMT....11...49K. doi:10.5194/amt-11-49-2018. ISSN 1867-1381. S2CID 41910898. Archived (PDF) from the original on 2022-10-09. Retrieved 7 April 2022.
  11. ^ "Thermophysical Properties Of Fluids II – Methane, Ethane, Propane, Isobutane, And Normal Butane" Archived 2016-12-21 at the Wayback Machine (page 110 of PDF, page 686 of original document), BA Younglove and JF Ely.
  12. ^ "Thermophysical Properties Of Nitrous Oxide" (page 14 of PDF, page 10 of original document), ESDU.
  13. ^ Pankow, J. F.; et al. (2008). "SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds". Atmos. Chem. Phys. 8 (10): 2773–2796. Bibcode:2008ACP.....8.2773P. doi:10.5194/acp-8-2773-2008.
  14. ^ "Vapour pressure of Pure Liquid Organic Compounds: Estimation by EVAPORATION". Tropospheric Chemistry Modelling at BIRA-IASB. 11 June 2014. Retrieved 2018-11-26.
  15. ^ Compernolle, S.; et al. (2011). "EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions". Atmos. Chem. Phys. 11 (18): 9431–9450. Bibcode:2011ACP....11.9431C. doi:10.5194/acp-11-9431-2011.
  16. ^ a b American Meteorological Society (2012). "vapor pressure". Glossary of Meteorology. Retrieved 2022-11-28.
  17. ^ American Meteorological Society (2020). "saturation vapor pressure". Glossary of Meteorology. Retrieved 2022-11-28.
  18. ^ a b c d e f Babin, Steven M. (1998). "Relative Humidity & Saturation Vapor Pressure: A Brief Tutorial". Johns Hopkins University Applied Physics Laboratory. Archived from the original on 1998-07-13. Retrieved 2022-11-28. (Alternate title: "Water Vapor Myths: A Brief Tutorial".)
  19. ^ a b American Meteorological Society (2012). "equilibrium vapor pressure". Glossary of Meteorology. Retrieved 2022-11-28.
  20. ^ Raymond, David J. (2011-05-12). "Chapter 5: Cloud Microphysics" (PDF). Atmospheric Convection. New Mexico Institute of Mining and Technology. p. 73. Archived (PDF) from the original on 2017-03-29. Retrieved 2022-11-28.
[edit]