Jump to content

Philip Rosenstiel: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Created by translating the page "Philip Rosenstiel"
Undid revision 1204011027 by HRShami (talk) Incorrectly created translation on the original page.
Line 1: Line 1:
{{Short description|German medical doctor}}
 


{{Infobox academic
'''Philip Rosenstiel''' ist ein [[Germans|Deutscher]] [[Physician|Mediziner]] und ein [[Academic|Akademiker]]. Er ist [[Director (education)|Direktor]] des [[Institute of Clinical Molecular Biology|Instituts für Klinische Molekularbiologie]] und Professor für klinische [[Molecular biology|Molekularbiologie]] an der [[Kiel University|Universität Kiel]].<ref name="es">{{Cite web|url=https://www.medizin.uni-kiel.de/en/deans-office/deans/prof-dr-med-philip-rosenstiel-1|title=Prof. Dr. med. Philip Rosenstiel|website=Medizinische Fakultät}}</ref>
| name = Philip Rosenstiel
| birth_place =
| nationality = [[Germans|German]]
| occupation = [[Physician|Medical doctor]], [[academic]], and [[Professor|full university professor]]
| title =
| awards =
| website =
| education = [[Doctor of Medicine]]
| alma_mater = Kiel University<br/>[[Tufts University]]
| thesis_title =
| thesis_url =
| thesis_year =
| workplaces = [[Kiel University]]
}}
'''Philip Rosenstiel''' is a [[Germans|German]] [[Physician|medical doctor]] and an [[academic]]. He is [[Director (education)|director]] of the [[Institute of Clinical Molecular Biology]] and a professor of clinical [[molecular biology]] at [[Kiel University]].<ref name=es>{{Cite web |url=https://www.medizin.uni-kiel.de/en/deans-office/deans/prof-dr-med-philip-rosenstiel-1 |title=Prof. Dr. med. Philip Rosenstiel |website=Medizinische Fakultät}}</ref>


Rosenstiel is most known for his work on the [[pathophysiology]] of chronic inflammatory diseases, primarily focusing on developing innovative [[biomarker]]s and new therapeutic approaches. His work has been published in academic journals including ''[[Nature (journal)|Nature]]'', ''[[Nature Genetics]]'', ''[[Cell Metabolism]]'' and ''[[Immunity (journal)|Immunity]]''.<ref name=sd>{{Cite web |url=https://scholar.google.com/citations?user=7rGxsRUAAAAJ&hl=de |title=Philip Rosenstiel |website=scholar.google.com}}</ref>


==Education==
Rosenstiel obtained a [[Doctor of Medicine|degree in medicine]] in 2001 from [[Kiel University]]. During this time, he also went for training to [[Tufts University]] in [[Boston]] as part of a scholarship from the [[BMEP]] and the [[Studienstiftung]].<ref name=es/>


==Career==
Rosenstiel ist vor allem bekannt für seine Arbeit zur  [[Pathophysiology|Pathophysiologie]] von chronischen Entzündungskrankheiten, wobei er sich vor allem auf die Entwicklung innovativer [[Biomarker]] und neue therapeutische Ansätze fokussiert. Seine Arbeiten wurden in akademischen Fachzeitschriften veröffentlicht, darunter ''[[Nature (journal)|Nature]]'', ''[[Nature Genetics]]'', ''Cell Metabolism'' und ''Immunity.''<ref name="sd">{{Cite web|url=https://scholar.google.com/citations?user=7rGxsRUAAAAJ&hl=de|title=Philip Rosenstiel|website=scholar.google.com}}</ref>
Rosenstiel's academic career began as a BMEP [[research fellow]] at the [[Jackson Laboratory]] from 1997 to 1998. He subsequently held the position of [[postdoctoral fellow]] at the [[Max Planck Institute for Molecular Genetics]] between 2005 and 2007. He served as a [[professor]] of Molecular and Marine Medicine at Kiel University from 2007 to 2012. Following this, he was appointed as a professor of [[molecular medicine]] between 2012 and 2016. Since 2012, he has been the director of the Institute of Clinical Molecular Biology, and since 2016 a professor of clinical molecular biology at Kiel University.<ref name=es/>


Rosenstiel has been a member of the steering board of the [[International Human Epigenome Consortium]] since 2017<ref>{{Cite web |url=https://syscid.eu/news/article/syscid-is-welcomed-to-the-ihec-family/ |title=SYSCID is welcomed to the IHEC family! |website=syscid.eu}}</ref> and is spokesperson of the Precision Health in Schleswig-Holstein, a governance body to foster clinical translational research in [[Schleswig-Holstein]]. Since 2022, he has been serving as [[vice-dean]] for research at the Medical Faculty in Kiel.<ref>{{Cite web |url=https://precision-health-sh.de/ |title=Was ist Precision Health in Schleswig-Holstein? |website=precision-health-sh.de}}</ref>
== Bildung ==
Rosenstiel erwarb einen [[Doctor of Medicine|Abschluss in Medizin]] im Jahr 2001 an der [[Kiel University|Universität Kiel]]. Während seines Studiums ging er auch zur Ausbildung an die [[Tufts University|Tufts Universität]] in [[Boston]] im Rahmen eines Stipendiums des [[BMEP]] und der [[Studienstiftung]].<ref name="es">{{Cite web|url=https://www.medizin.uni-kiel.de/en/deans-office/deans/prof-dr-med-philip-rosenstiel-1|title=Prof. Dr. med. Philip Rosenstiel|website=Medizinische Fakultät}}</ref>


== Karriere ==
==Research==
Rosenstiel has employed methods from [[systems immunology]] and utilized genomic techniques such as [[single-cell analysis]] to create novel biomarkers and explore innovative therapeutic strategies. He contributed to the pilot phase of the [[1000 Genomes Project]], participated in the German [[International Cancer Genome Consortium]] (ICGC) on malignant [[lymphoma]] and led the large European Horizon 2020 Project on Systems Medicine in Chronic Inflammation (SYSCID).<ref>{{Cite journal |title=Systems Medicine in Chronic Inflammatory Diseases |date=April 17, 2018 |journal=Immunity |volume=48 |issue=4 |pages=608–613 |doi=10.1016/j.immuni.2018.03.022 |pmid=29669240 |last1=Schultze |first1=Joachim L. |last2=Rosenstiel |first2=Philip |last3=Rosenstiel |first3=P. |doi-access=free }}</ref><ref>{{Cite journal |title=A map of human genome variation from population-scale sequencing |date=October 5, 2010 |journal=Nature |volume=467 |issue=7319 |pages=1061–1073 |doi=10.1038/nature09534 |pmid=20981092 |bibcode=2010Natur.467.1061T |author1=The 1000 Genomes Project Consortium |last2=Altshuler |first2=David L. |last3=Durbin |first3=Richard M. |last4=Abecasis |first4=Gonçalo R. |last5=Bentley |first5=David R. |last6=Chakravarti |first6=Aravinda |last7=Clark |first7=Andrew G. |last8=Collins |first8=Francis S. |last9=de la Vega |first9=Francisco M. |last10=Donnelly |first10=Peter |last11=Egholm |first11=Michael |last12=Flicek |first12=Paul |last13=Gabriel |first13=Stacey B. |last14=Gibbs |first14=Richard A. |last15=Knoppers |first15=Bartha M. |last16=Lander |first16=Eric S. |last17=Lehrach |first17=Hans |last18=Mardis |first18=Elaine R. |last19=McVean |first19=Gil A. |last20=Nickerson |first20=Debbie A. |last21=Peltonen |first21=Leena |last22=Schafer |first22=Alan J. |last23=Sherry |first23=Stephen T. |last24=Wang |first24=Jun |last25=Gibbs |first25=Richard A. |last26=Deiros |first26=David |last27=Metzker |first27=Mike |last28=Muzny |first28=Donna |last29=Reid |first29=Jeff |last30=Wang |first30=Jun |pmc=3042601 |display-authors=1 }}</ref> He has authored publications with a specific focus on the pathophysiology of chronic inflammatory diseases, including articles in peer-reviewed journals.<ref name=sd/> He has authored over 450 scientific publications until end of 2023 with a specific focus on chronic inflammatory diseases. In December 2023 he had an h-index over 113 and his articles received over 76908 citations.<ref name=sd/>
Rosenstiels akademische Karriere begann als BMEP [[Research fellow|Forschungsstipendiat]] am [[Jackson Laboratory|Jackson Laboratorium]] von 1997 bis 1998. Nach seiner ärztlichen Ausbildung an der Klinik für Innere Medizin am Universitätsklinikum Schleswig-Holstein war er als  [[Postdoctoral fellow|postdoktoraler Stipendiat]] am [[Max Planck Institute for Molecular Genetics|Max-Planck-Institut für Molekulare Genetik]] tätig.  2007 wurde er auf eine  [[Professor|Professur]]  für Molekulare und Marine Medizin an der Universität Kiel berufen. Seit 2012 ist er Direktor des Instituts für Klinische Molekularbiologie und seit 2016 W3-Professor für Klinische Molekularbiologie an der Universität Kiel.<ref name="es">{{Cite web|url=https://www.medizin.uni-kiel.de/en/deans-office/deans/prof-dr-med-philip-rosenstiel-1|title=Prof. Dr. med. Philip Rosenstiel|website=Medizinische Fakultät}}</ref>


===Pathophysiology of chronic inflammatory diseases===
Rosenstiel ist seit 2017 Mitglied des Lenkungsausschusses des [[International Human Epigenome Consortium|Internationalen Humanen Epigenom-Konsortiums]].<ref>{{Cite web|url=https://syscid.eu/news/article/syscid-is-welcomed-to-the-ihec-family/|title=SYSCID is welcomed to the IHEC family!|website=syscid.eu}}</ref> Er ist Sprecher von Precision Health in Schleswig-Holstein, einem Gremium zur Förderung der klinischen translationalen Forschung in [[Schleswig-Holstein]]. Seit 2022 ist er [[Vice-dean|Prodekan]] für Forschung an der Medizinischen Fakultät in Kiel.<ref>{{Cite web|url=https://precision-health-sh.de/|title=Was ist Precision Health in Schleswig-Holstein?|website=precision-health-sh.de}}</ref>
Rosenstiel's work on mechanisms of chronic inflammatory diseases, particularly human chronic inflammatory bowel diseases (IBD), investigates the role of the intestinal epithelium for the crosstalk between the microbiota and mucosal immune responses.<ref>{{Cite journal |title=TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells |first1=Philip |last1=Rosenstiel |first2=Massimo |last2=Fantini |first3=Karen |last3=Bräutigam |first4=Tanja |last4=Kühbacher |first5=Georg H. |last5=Waetzig |first6=Dirk |last6=Seegert |first7=Stefan |last7=Schreiber |date=April 5, 2003 |journal=Gastroenterology |volume=124 |issue=4 |pages=1001–1009 |doi=10.1053/gast.2003.50157 |pmid=12671897 |display-authors=1}}</ref><ref>{{Cite journal |url=https://www.jci.org/articles/view/62236/figure/8 |title=NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer |first1=Aurélie |last1=Couturier-Maillard |first2=Thomas |last2=Secher |first3=Ateequr |last3=Rehman |first4=Sylvain |last4=Normand |first5=Adèle De |last5=Arcangelis |first6=Robert |last6=Haesler |first7=Ludovic |last7=Huot |first8=Teddy |last8=Grandjean |first9=Aude |last9=Bressenot |first10=Anne |last10=Delanoye-Crespin |first11=Olivier |last11=Gaillot |first12=Stefan |last12=Schreiber |first13=Yves |last13=Lemoine |first14=Bernhard |last14=Ryffel |first15=David |last15=Hot |first16=Gabriel |last16=Nùñez |first17=Grace |last17=Chen |first18=Philip |last18=Rosenstiel |first19=Mathias |last19=Chamaillard |date=February 1, 2013 |journal=Journal of Clinical Investigation |volume=123 |issue=2 |pages=700–711 |doi=10.1172/JCI62236 |pmid=23281400 |pmc=3561825 |display-authors=1}}</ref><ref>{{Cite journal |title=RNAi screening identifies mediators of NOD2 signaling: Implications for spatial specificity of MDP recognition |first1=Simone |last1=Lipinski |first2=Nils |last2=Grabe |first3=Gunnar |last3=Jacobs |first4=Susanne |last4=Billmann-Born |first5=Andreas |last5=Till |first6=Robert |last6=Häsler |first7=Konrad |last7=Aden |first8=Maren |last8=Paulsen |first9=Alexander |last9=Arlt |first10=Lars |last10=Kraemer |first11=Nina |last11=Hagemann |first12=Kai Sven |last12=Erdmann |first13=Stefan |last13=Schreiber |first14=Philip |last14=Rosenstiel |date=December 26, 2012 |journal=Proceedings of the National Academy of Sciences |volume=109 |issue=52 |pages=21426–21431 |doi=10.1073/pnas.1209673109 |doi-access=free |pmid=23213202 |pmc=3535590|display-authors=1}}</ref> A particular focus has been on the role of autophagy and ER stress as basic principles of epithelial differentiation and Paneth cell function.<ref>{{Cite journal |title=A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 |first1=Jochen |last1=Hampe |first2=Andre |last2=Franke |first3=Philip |last3=Rosenstiel |first4=Andreas |last4=Till |first5=Markus |last5=Teuber |first6=Klaus |last6=Huse |first7=Mario |last7=Albrecht |first8=Gabriele |last8=Mayr |first9=Francisco M. |last9=De La Vega |first10=Jason |last10=Briggs |first11=Simone |last11=Günther |first12=Natalie J. |last12=Prescott |first13=Clive M. |last13=Onnie |first14=Robert |last14=Häsler |first15=Bence |last15=Sipos |first16=Ulrich R. |last16=Fölsch |first17=Thomas |last17=Lengauer |first18=Matthias |last18=Platzer |first19=Christopher G. |last19=Mathew |first20=Michael |last20=Krawczak |first21=Stefan |last21=Schreiber |date=February 5, 2007 |journal=Nature Genetics |volume=39 |issue=2 |pages=207–211 |doi=10.1038/ng1954 |pmid=17200669 |s2cid=24615261 |display-authors=1 }}</ref><ref>{{Cite journal |title=Paneth cells as a site of origin for intestinal inflammation |first1=Timon E. |last1=Adolph |first2=Michal F. |last2=Tomczak |first3=Lukas |last3=Niederreiter |first4=Hyun-Jeong |last4=Ko |first5=Janne |last5=Böck |first6=Eduardo |last6=Martinez-Naves |first7=Jonathan N. |last7=Glickman |first8=Markus |last8=Tschurtschenthaler |first9=John |last9=Hartwig |first10=Shuhei |last10=Hosomi |first11=Magdalena B. |last11=Flak |first12=Jennifer L. |last12=Cusick |first13=Kenji |last13=Kohno |first14=Takao |last14=Iwawaki |first15=Susanne |last15=Billmann-Born |first16=Tim |last16=Raine |first17=Richa |last17=Bharti |first18=Ralph |last18=Lucius |first19=Mi-Na |last19=Kweon |first20=Stefan J. |last20=Marciniak |first21=Augustine |last21=Choi |first22=Susan J. |last22=Hagen |first23=Stefan |last23=Schreiber |first24=Philip |last24=Rosenstiel |first25=Arthur |last25=Kaser |first26=Richard S. |last26=Blumberg |date=November 14, 2013 |journal=Nature |volume=503 |issue=7475 |pages=272–276 |doi=10.1038/nature12599 |pmid=24089213 |pmc=3862182 |bibcode=2013Natur.503..272A|display-authors=1 }}</ref><ref>{{Cite journal |title=ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING |first1=Konrad |last1=Aden |first2=Florian |last2=Tran |first3=Go |last3=Ito |first4=Raheleh |last4=Sheibani-Tezerji |first5=Simone |last5=Lipinski |first6=Jan W. |last6=Kuiper |first7=Markus |last7=Tschurtschenthaler |first8=Svetlana |last8=Saveljeva |first9=Joya |last9=Bhattacharyya |first10=Robert |last10=Häsler |first11=Kareen |last11=Bartsch |first12=Anne |last12=Luzius |first13=Marlene |last13=Jentzsch |first14=Maren |last14=Falk-Paulsen |first15=Stephanie T. |last15=Stengel |first16=Lina |last16=Welz |first17=Robin |last17=Schwarzer |first18=Björn |last18=Rabe |first19=Winfried |last19=Barchet |first20=Stefan |last20=Krautwald |first21=Gunther |last21=Hartmann |first22=Manolis |last22=Pasparakis |first23=Richard S. |last23=Blumberg |first24=Stefan |last24=Schreiber |first25=Arthur |last25=Kaser |first26=Philip |last26=Rosenstiel |date=November 5, 2018 |journal=The Journal of Experimental Medicine |volume=215 |issue=11 |pages=2868–2886 |doi=10.1084/jem.20171029 |pmid=30254094 |pmc=6219748|display-authors=1}}</ref> His showed a link between the defective removal of RNA nucleotides during proliferation of intestinal epithelial cells, mucosal inflammation and colorectal cancer formation.<ref>{{Cite journal |title=Epithelial RNase H2 Maintains Genome Integrity and Prevents Intestinal Tumorigenesis in Mice |first1=Aden |last1=K |first2=Bartsch |last2=K |first3=Dahl |last3=J |first4=Reijns |last4=Mam |first5=Esser |last5=D |first6=Sheibani-Tezerji |last6=R |first7=Sinha |last7=A |first8=Wottawa |last8=F |first9=Ito |last9=G |first10=Mishra |last10=N |first11=Knittler |last11=K |first12=Burkholder |last12=A |first13=Welz |last13=L |first14=van Es |last14=J |first15=Tran |last15=F |first16=Lipinski |last16=S |first17=Kakavand |last17=N |first18=Boeger |last18=C |first19=Lucius |last19=R |first20=von Schoenfels |last20=W |first21=Schafmayer |last21=C |first22=Lenk |last22=L |first23=Chalaris |last23=A |first24=Clevers |last24=H |first25=Röcken |last25=C |first26=Kaleta |last26=C |first27=Rose-John |last27=S |first28=Schreiber |last28=S |first29=Kunkel |last29=T |first30=Rabe |last30=B |first31=Rosenstiel |last31=P |date=January 5, 2019 |journal=Gastroenterology |volume=156 |issue=1 |pages=145–159.e19 |doi=10.1053/j.gastro.2018.09.047 |pmid=30273559 |pmc=6311085 |display-authors=1}}</ref> With Josef Penninger and others, he demonstrated that a lack of the ACE2 enzyme, responsible for controlling the renin-angiotensin system, disrupts the balance of the amino acid tryptophan in the intestinal epithelium. This in turn leads to impaired antimicrobial peptide production in the gut, leading to increased susceptibility to colitis and intestinal inflammation.<ref>{{Cite journal |title=ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation |first1=Tatsuo |last1=Hashimoto |first2=Thomas |last2=Perlot |first3=Ateequr |last3=Rehman |first4=Jean |last4=Trichereau |first5=Hiroaki |last5=Ishiguro |first6=Magdalena |last6=Paolino |first7=Verena |last7=Sigl |first8=Toshikatsu |last8=Hanada |first9=Reiko |last9=Hanada |first10=Simone |last10=Lipinski |first11=Birgit |last11=Wild |first12=Simone M. R. |last12=Camargo |first13=Dustin |last13=Singer |first14=Andreas |last14=Richter |first15=Keiji |last15=Kuba |first16=Akiyoshi |last16=Fukamizu |first17=Stefan |last17=Schreiber |first18=Hans |last18=Clevers |first19=Francois |last19=Verrey |first20=Philip |last20=Rosenstiel |first21=Josef M. |last21=Penninger |date=July 5, 2012 |journal=Nature |volume=487 |issue=7408 |pages=477–481 |doi=10.1038/nature11228 |pmid=22837003 |pmc=7095315 |bibcode=2012Natur.487..477H |display-authors=1}}</ref> He has contributed to early clinical therapy developments, e.g. IL-6 transsignalling inhibition in IBD (olamkicept phase II trial) or sterile-filtered fecal material transfer for C. difficile infection.<ref>{{Cite journal |title=Therapeutic Interleukin-6 Trans-signaling Inhibition by Olamkicept (sgp130Fc) in Patients With Active Inflammatory Bowel Disease |first1=Stefan |last1=Schreiber |first2=Konrad |last2=Aden |first3=Joana P. |last3=Bernardes |first4=Claudio |last4=Conrad |first5=Florian |last5=Tran |first6=Hanna |last6=Höper |first7=Valery |last7=Volk |first8=Neha |last8=Mishra |first9=Johanna Ira |last9=Blase |first10=Susanna |last10=Nikolaus |first11=Johannes |last11=Bethge |first12=Tanja |last12=Kühbacher |first13=Christoph |last13=Röcken |first14=Minhu |last14=Chen |first15=Ian |last15=Cottingham |first16=Niclas |last16=Petri |first17=Birgitte B. |last17=Rasmussen |first18=Juliane |last18=Lokau |first19=Lennart |last19=Lenk |first20=Christoph |last20=Garbers |first21=Friedrich |last21=Feuerhake |first22=Stefan |last22=Rose-John |first23=Georg H. |last23=Waetzig |first24=Philip |last24=Rosenstiel |date=June 5, 2021 |journal=Gastroenterology |volume=160 |issue=7 |pages=2354–2366.e11 |doi=10.1053/j.gastro.2021.02.062 |pmid=33667488|display-authors=1|doi-access=free }}</ref><ref>{{Cite journal |title=Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection |first1=Stephan J. |last1=Ott |first2=Georg H. |last2=Waetzig |first3=Ateequr |last3=Rehman |first4=Jacqueline |last4=Moltzau-Anderson |first5=Richa |last5=Bharti |first6=Juris A. |last6=Grasis |first7=Liam |last7=Cassidy |first8=Andreas |last8=Tholey |first9=Helmut |last9=Fickenscher |first10=Dirk |last10=Seegert |first11=Philip |last11=Rosenstiel |first12=Stefan |last12=Schreiber |date=March 5, 2017 |journal=Gastroenterology |volume=152 |issue=4 |pages=799–811.e7 |doi=10.1053/j.gastro.2016.11.010 |pmid=27866880|display-authors=1|hdl=21.11116/0000-0002-F84B-3 |hdl-access=free }}</ref>


===Molecular profiling and biomarkers of disease===
== Forschung ==
Rosenstiel's work has also focused on biomarker development in chronic inflammatory diseases and cancer. Here, he mostly employed multi-omics techniques, e.g. transcriptomics and methylomics<ref>{{Cite journal |title=Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing |date=December 5, 2012 |journal=Nature Genetics |volume=44 |issue=12 |pages=1316–1320 |doi=10.1038/ng.2469 |pmid=23143595 |last1=Richter |first1=J. |last2=Schlesner |first2=M. |last3=Hoffmann |first3=S. |last4=Kreuz |first4=M. |last5=Leich |first5=E. |last6=Burkhardt |first6=B. |last7=Rosolowski |first7=M. |last8=Ammerpohl |first8=O. |last9=Wagener |first9=R. |last10=Bernhart |first10=S. H. |last11=Lenze |first11=D. |last12=Szczepanowski |first12=M. |last13=Paulsen |first13=M. |last14=Lipinski |first14=S. |last15=Russell |first15=R. B. |last16=Adam-Klages |first16=S. |last17=Apic |first17=G. |last18=Claviez |first18=A. |last19=Hasenclever |first19=D. |last20=Hovestadt |first20=V. |last21=Hornig |first21=N. |last22=Korbel |first22=J. O. |last23=Kube |first23=D. |last24=Langenberger |first24=D. |last25=Lawerenz |first25=C. |last26=Lisfeld |first26=J. |last27=Meyer |first27=K. |last28=Picelli |first28=S. |last29=Pischimarov |first29=J. |last30=Radlwimmer |first30=B. |s2cid=33638575 |url=https://nbn-resolving.org/urn:nbn:de:bvb:384-opus4-794341 |display-authors=1 }}</ref><ref>{{Cite journal |title=A functional methylome map of ulcerative colitis |first1=Robert |last1=Häsler |first2=Zhe |last2=Feng |first3=Liselotte |last3=Bäckdahl |first4=Martina E. |last4=Spehlmann |first5=Andre |last5=Franke |first6=Andrew |last6=Teschendorff |first7=Vardhman K. |last7=Rakyan |first8=Thomas A. |last8=Down |first9=Gareth A. |last9=Wilson |first10=Andrew |last10=Feber |first11=Stephan |last11=Beck |first12=Stefan |last12=Schreiber |first13=Philip |last13=Rosenstiel |date=November 5, 2012 |journal=Genome Research |volume=22 |issue=11 |pages=2130–2137 |doi=10.1101/gr.138347.112 |pmid=22826509 |pmc=3483542|display-authors=1}}</ref> and microbiome analysis<ref>{{Cite journal |title=Metabolic Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases |first1=Konrad |last1=Aden |first2=Ateequr |last2=Rehman |first3=Silvio |last3=Waschina |first4=Wei-Hung |last4=Pan |first5=Alesia |last5=Walker |first6=Marianna |last6=Lucio |first7=Alejandro Mena |last7=Nunez |first8=Richa |last8=Bharti |first9=Johannes |last9=Zimmerman |first10=Johannes |last10=Bethge |first11=Berenice |last11=Schulte |first12=Dominik |last12=Schulte |first13=Andre |last13=Franke |first14=Susanna |last14=Nikolaus |first15=Johann Oltmann |last15=Schroeder |first16=Doris |last16=Vandeputte |first17=Jeroen |last17=Raes |first18=Silke |last18=Szymczak |first19=Georg H. |last19=Waetzig |first20=Rainald |last20=Zeuner |first21=Philippe |last21=Schmitt-Kopplin |first22=Christoph |last22=Kaleta |first23=Stefan |last23=Schreiber |first24=Philip |last24=Rosenstiel |date=November 5, 2019 |journal=Gastroenterology |volume=157 |issue=5 |pages=1279–1292.e11 |doi=10.1053/j.gastro.2019.07.025 |pmid=31326413|display-authors=1|doi-access=free }}</ref> to develop predictions for individual trajectories of disease and to stratify patients for different targeted therapies. During the COVID-19 pandemic, he was founding member of the DeCOI consortium and led analyses, which identified megakaryocyte expression signatures as a marker for fatal disease course.<ref>{{Cite journal |title=Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19 |date=December 15, 2020 |journal=Immunity |volume=53 |issue=6 |pages=1296–1314.e9 |doi=10.1016/j.immuni.2020.11.017 |pmid=33296687 |pmc=7689306 |last1=Bernardes |first1=Joana P. |last2=Mishra |first2=Neha |last3=Tran |first3=Florian |last4=Bahmer |first4=Thomas |last5=Best |first5=Lena |last6=Blase |first6=Johanna I. |last7=Bordoni |first7=Dora |last8=Franzenburg |first8=Jeanette |last9=Geisen |first9=Ulf |last10=Josephs-Spaulding |first10=Jonathan |last11=Köhler |first11=Philipp |last12=Künstner |first12=Axel |last13=Rosati |first13=Elisa |last14=Aschenbrenner |first14=Anna C. |last15=Bacher |first15=Petra |last16=Baran |first16=Nathan |last17=Boysen |first17=Teide |last18=Brandt |first18=Burkhard |last19=Bruse |first19=Niklas |last20=Dörr |first20=Jonathan |last21=Dräger |first21=Andreas |last22=Elke |first22=Gunnar |last23=Ellinghaus |first23=David |last24=Fischer |first24=Julia |last25=Forster |first25=Michael |last26=Franke |first26=Andre |last27=Franzenburg |first27=Sören |last28=Frey |first28=Norbert |last29=Friedrichs |first29=Anette |last30=Fuß |first30=Janina |display-authors=1 }}</ref>
Rosenstiel hat Methoden der [[Systems immunology|System-Immunologie]] etabliert und nutzte genomische Techniken wie die [[Single-cell analysis|Einzelzellanalyse]] um neue Biomarker zu entwickeln und innovative therapeutische Strategien zu erforschen. Er hat an der Pilotphase des [[1000 Genomes Project|1000-Genome-Projekts]] partizipiert und beteiligte sich an dem deutschen [[International Cancer Genome Consortium|Internationalen Krebsgenom-Konsortium]] (ICGC) zum malignen [[Lymphoma|Lymphom]] und leitete das große europäische Horizon 2020 Projekt zur Systemmedizin bei chronischen Entzündungen (SYSCID).<ref>{{Cite journal|title=Systems Medicine in Chronic Inflammatory Diseases|date=April 17, 2018|work=Immunity|volume=48|issue=4|pages=608–613|doi=10.1016/j.immuni.2018.03.022|pmid=29669240|last=Schultze|first=Joachim L.|last2=Rosenstiel|first2=Philip|last3=Rosenstiel|first3=P.|accessdate=free}}</ref><ref>{{Cite journal|title=A map of human genome variation from population-scale sequencing|date=October 5, 2010|work=Nature|volume=467|issue=7319|pages=1061–1073|doi=10.1038/nature09534|pmid=20981092|bibcode=2010Natur.467.1061T|last=The 1000 Genomes Project Consortium|last2=Altshuler|first2=David L.|last3=Durbin|first3=Richard M.|last4=Abecasis|first4=Gonçalo R.|last5=Bentley|first5=David R.|last6=Chakravarti|first6=Aravinda|last7=Clark|first7=Andrew G.|last8=Collins|first8=Francis S.|last9=de la Vega|first9=Francisco M.|last10=Donnelly|first10=Peter|last11=Egholm|first11=Michael|last12=Flicek|first12=Paul|last13=Gabriel|first13=Stacey B.|last14=Gibbs|first14=Richard A.|last15=Knoppers|first15=Bartha M.|last16=Lander|first16=Eric S.|last17=Lehrach|first17=Hans|last18=Mardis|first18=Elaine R.|last19=McVean|first19=Gil A.|last20=Nickerson|first20=Debbie A.|last21=Peltonen|first21=Leena|last22=Schafer|first22=Alan J.|last23=Sherry|first23=Stephen T.|last24=Wang|first24=Jun|last25=Gibbs|first25=Richard A.|last26=Deiros|first26=David|last27=Metzker|first27=Mike|last28=Muzny|first28=Donna|last29=Reid|first29=Jeff|last30=Wang|first30=Jun|pmc=3042601}}</ref> Er ist Autor von Veröffentlichungen mit einem besonderen Schwerpunkt auf der Pathophysiologie chronischer Entzündungskrankheiten, darunter Artikel in Fachzeitschriften mit Peer-Review.<ref name="sd">{{Cite web|url=https://scholar.google.com/citations?user=7rGxsRUAAAAJ&hl=de|title=Philip Rosenstiel|website=scholar.google.com}}</ref> Bis Ende 2023 hat er über 450 wissenschaftliche Publikationen mit dem Schwerpunkt chronische Entzündungskrankheiten verfasst. Im Dezember 2023 hatte er einen h-Index von über 113 und seine Artikel wurden über 76908 Mal zitiert.<ref name="sd" />


==Awards and honors==
=== Pathophysiologie chronisch entzündlicher Erkrankungen ===
*2001 – Recipient of the Graduate stipend of the Novartis Stiftung für therapeutische Forschung
Rosenstiels Arbeiten über die Mechanismen chronischer Entzündungskrankheiten, insbesondere chronisch entzündlicher Darmerkrankungen (IBD) beim Menschen, untersuchen die Rolle des Darmepithels für das Zusammenspiel zwischen der Mikrobiota und den mukosalen Immunreaktionen.<ref>{{Cite journal|title=TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells|first=Philip|last=Rosenstiel|first2=Massimo|last2=Fantini|first3=Karen|last3=Bräutigam|first4=Tanja|last4=Kühbacher|first5=Georg H.|last5=Waetzig|first6=Dirk|last6=Seegert|first7=Stefan|last7=Schreiber|date=April 5, 2003|work=Gastroenterology|volume=124|issue=4|pages=1001–1009|doi=10.1053/gast.2003.50157|pmid=12671897}}</ref><ref>{{Cite journal|url=https://www.jci.org/articles/view/62236/figure/8|title=NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer|first=Aurélie|last=Couturier-Maillard|first2=Thomas|last2=Secher|first3=Ateequr|last3=Rehman|first4=Sylvain|last4=Normand|first5=Adèle De|last5=Arcangelis|first6=Robert|last6=Haesler|first7=Ludovic|last7=Huot|first8=Teddy|last8=Grandjean|first9=Aude|last9=Bressenot|first10=Anne|last10=Delanoye-Crespin|first11=Olivier|last11=Gaillot|first12=Stefan|last12=Schreiber|first13=Yves|last13=Lemoine|first14=Bernhard|last14=Ryffel|first15=David|last15=Hot|first16=Gabriel|last16=Nùñez|first17=Grace|last17=Chen|first18=Philip|last18=Rosenstiel|first19=Mathias|last19=Chamaillard|date=February 1, 2013|work=Journal of Clinical Investigation|volume=123|issue=2|pages=700–711|doi=10.1172/JCI62236|pmid=23281400|pmc=3561825}}</ref><ref>{{Cite journal|title=RNAi screening identifies mediators of NOD2 signaling: Implications for spatial specificity of MDP recognition|first=Simone|last=Lipinski|first2=Nils|last2=Grabe|first3=Gunnar|last3=Jacobs|first4=Susanne|last4=Billmann-Born|first5=Andreas|last5=Till|first6=Robert|last6=Häsler|first7=Konrad|last7=Aden|first8=Maren|last8=Paulsen|first9=Alexander|last9=Arlt|first10=Lars|last10=Kraemer|first11=Nina|last11=Hagemann|first12=Kai Sven|last12=Erdmann|first13=Stefan|last13=Schreiber|first14=Philip|last14=Rosenstiel|date=December 26, 2012|work=Proceedings of the National Academy of Sciences|volume=109|issue=52|pages=21426–21431|doi=10.1073/pnas.1209673109|accessdate=free|pmid=23213202|pmc=3535590}}</ref> Ein besonderer Schwerpunkt liegt auf der Rolle von Autophagie und ER-Stress als Grundprinzipien der epithelialen Differenzierung und der Funktion der Paneth-Zellen.<ref>{{Cite journal|title=A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1|first=Jochen|last=Hampe|first2=Andre|last2=Franke|first3=Philip|last3=Rosenstiel|first4=Andreas|last4=Till|first5=Markus|last5=Teuber|first6=Klaus|last6=Huse|first7=Mario|last7=Albrecht|first8=Gabriele|last8=Mayr|first9=Francisco M.|last9=De La Vega|first10=Jason|last10=Briggs|first11=Simone|last11=Günther|first12=Natalie J.|last12=Prescott|first13=Clive M.|last13=Onnie|first14=Robert|last14=Häsler|first15=Bence|last15=Sipos|first16=Ulrich R.|last16=Fölsch|first17=Thomas|last17=Lengauer|first18=Matthias|last18=Platzer|first19=Christopher G.|last19=Mathew|first20=Michael|last20=Krawczak|first21=Stefan|last21=Schreiber|date=February 5, 2007|work=Nature Genetics|volume=39|issue=2|pages=207–211|doi=10.1038/ng1954|pmid=17200669}}</ref><ref>{{Cite journal|title=Paneth cells as a site of origin for intestinal inflammation|first=Timon E.|last=Adolph|first2=Michal F.|last2=Tomczak|first3=Lukas|last3=Niederreiter|first4=Hyun-Jeong|last4=Ko|first5=Janne|last5=Böck|first6=Eduardo|last6=Martinez-Naves|first7=Jonathan N.|last7=Glickman|first8=Markus|last8=Tschurtschenthaler|first9=John|last9=Hartwig|first10=Shuhei|last10=Hosomi|first11=Magdalena B.|last11=Flak|first12=Jennifer L.|last12=Cusick|first13=Kenji|last13=Kohno|first14=Takao|last14=Iwawaki|first15=Susanne|last15=Billmann-Born|first16=Tim|last16=Raine|first17=Richa|last17=Bharti|first18=Ralph|last18=Lucius|first19=Mi-Na|last19=Kweon|first20=Stefan J.|last20=Marciniak|first21=Augustine|last21=Choi|first22=Susan J.|last22=Hagen|first23=Stefan|last23=Schreiber|first24=Philip|last24=Rosenstiel|first25=Arthur|last25=Kaser|first26=Richard S.|last26=Blumberg|date=November 14, 2013|work=Nature|volume=503|issue=7475|pages=272–276|doi=10.1038/nature12599|pmid=24089213|pmc=3862182|bibcode=2013Natur.503..272A}}</ref><ref>{{Cite journal|title=ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING|first=Konrad|last=Aden|first2=Florian|last2=Tran|first3=Go|last3=Ito|first4=Raheleh|last4=Sheibani-Tezerji|first5=Simone|last5=Lipinski|first6=Jan W.|last6=Kuiper|first7=Markus|last7=Tschurtschenthaler|first8=Svetlana|last8=Saveljeva|first9=Joya|last9=Bhattacharyya|first10=Robert|last10=Häsler|first11=Kareen|last11=Bartsch|first12=Anne|last12=Luzius|first13=Marlene|last13=Jentzsch|first14=Maren|last14=Falk-Paulsen|first15=Stephanie T.|last15=Stengel|first16=Lina|last16=Welz|first17=Robin|last17=Schwarzer|first18=Björn|last18=Rabe|first19=Winfried|last19=Barchet|first20=Stefan|last20=Krautwald|first21=Gunther|last21=Hartmann|first22=Manolis|last22=Pasparakis|first23=Richard S.|last23=Blumberg|first24=Stefan|last24=Schreiber|first25=Arthur|last25=Kaser|first26=Philip|last26=Rosenstiel|date=November 5, 2018|work=The Journal of Experimental Medicine|volume=215|issue=11|pages=2868–2886|doi=10.1084/jem.20171029|pmid=30254094|pmc=6219748}}</ref> Er zeigte einen Zusammenhang zwischen der mangelhaften Beseitigung von RNA-Nukleotiden während der Proliferation von Darmepithelzellen, Schleimhautentzündungen und der Entstehung von Darmkrebs.<ref>{{Cite journal|title=Epithelial RNase H2 Maintains Genome Integrity and Prevents Intestinal Tumorigenesis in Mice|first=Aden|last=K|first2=Bartsch|last2=K|first3=Dahl|last3=J|first4=Reijns|last4=Mam|first5=Esser|last5=D|first6=Sheibani-Tezerji|last6=R|first7=Sinha|last7=A|first8=Wottawa|last8=F|first9=Ito|last9=G|first10=Mishra|last10=N|first11=Knittler|last11=K|first12=Burkholder|last12=A|first13=Welz|last13=L|first14=van Es|last14=J|first15=Tran|last15=F|first16=Lipinski|last16=S|first17=Kakavand|last17=N|first18=Boeger|last18=C|first19=Lucius|last19=R|first20=von Schoenfels|last20=W|first21=Schafmayer|last21=C|first22=Lenk|last22=L|first23=Chalaris|last23=A|first24=Clevers|last24=H|first25=Röcken|last25=C|first26=Kaleta|last26=C|first27=Rose-John|last27=S|first28=Schreiber|last28=S|first29=Kunkel|last29=T|first30=Rabe|last30=B|first31=Rosenstiel|last31=P|date=January 5, 2019|work=Gastroenterology|volume=156|issue=1|pages=145–159.e19|doi=10.1053/j.gastro.2018.09.047|pmid=30273559|pmc=6311085}}</ref> Zusammen mit Josef Penninger und anderen wies er nach, dass ein Mangel an dem Enzym ACE2, das für die Kontrolle des Renin-Angiotensin-Systems verantwortlich ist, das Gleichgewicht der Aminosäure Tryptophan im Darmepithel stört. Dies wiederum führt zu einer beeinträchtigten Produktion antimikrobieller Peptide im Darm, was zu einer erhöhten Anfälligkeit für Darmentzündungen führt.<ref>{{Cite journal|title=ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation|first=Tatsuo|last=Hashimoto|first2=Thomas|last2=Perlot|first3=Ateequr|last3=Rehman|first4=Jean|last4=Trichereau|first5=Hiroaki|last5=Ishiguro|first6=Magdalena|last6=Paolino|first7=Verena|last7=Sigl|first8=Toshikatsu|last8=Hanada|first9=Reiko|last9=Hanada|first10=Simone|last10=Lipinski|first11=Birgit|last11=Wild|first12=Simone M. R.|last12=Camargo|first13=Dustin|last13=Singer|first14=Andreas|last14=Richter|first15=Keiji|last15=Kuba|first16=Akiyoshi|last16=Fukamizu|first17=Stefan|last17=Schreiber|first18=Hans|last18=Clevers|first19=Francois|last19=Verrey|first20=Philip|last20=Rosenstiel|first21=Josef M.|last21=Penninger|date=July 5, 2012|work=Nature|volume=487|issue=7408|pages=477–481|doi=10.1038/nature11228|pmid=22837003|pmc=7095315|bibcode=2012Natur.487..477H}}</ref> Er hat an frühen klinischen Therapieentwicklungen mitgewirkt, z.B. an der Hemmung des IL-6-Signalweges bei IBD (Olamkicept-Phase-II-Studie) oder an der Übertragung von steril gefiltertem Fäkalmaterial bei C. difficile-Infektionen.<ref>{{Cite journal|title=Therapeutic Interleukin-6 Trans-signaling Inhibition by Olamkicept (sgp130Fc) in Patients With Active Inflammatory Bowel Disease|first=Stefan|last=Schreiber|first2=Konrad|last2=Aden|first3=Joana P.|last3=Bernardes|first4=Claudio|last4=Conrad|first5=Florian|last5=Tran|first6=Hanna|last6=Höper|first7=Valery|last7=Volk|first8=Neha|last8=Mishra|first9=Johanna Ira|last9=Blase|first10=Susanna|last10=Nikolaus|first11=Johannes|last11=Bethge|first12=Tanja|last12=Kühbacher|first13=Christoph|last13=Röcken|first14=Minhu|last14=Chen|first15=Ian|last15=Cottingham|first16=Niclas|last16=Petri|first17=Birgitte B.|last17=Rasmussen|first18=Juliane|last18=Lokau|first19=Lennart|last19=Lenk|first20=Christoph|last20=Garbers|first21=Friedrich|last21=Feuerhake|first22=Stefan|last22=Rose-John|first23=Georg H.|last23=Waetzig|first24=Philip|last24=Rosenstiel|date=June 5, 2021|work=Gastroenterology|volume=160|issue=7|pages=2354–2366.e11|doi=10.1053/j.gastro.2021.02.062|pmid=33667488|accessdate=free}}</ref><ref>{{Cite journal|title=Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection|first=Stephan J.|last=Ott|first2=Georg H.|last2=Waetzig|first3=Ateequr|last3=Rehman|first4=Jacqueline|last4=Moltzau-Anderson|first5=Richa|last5=Bharti|first6=Juris A.|last6=Grasis|first7=Liam|last7=Cassidy|first8=Andreas|last8=Tholey|first9=Helmut|last9=Fickenscher|first10=Dirk|last10=Seegert|first11=Philip|last11=Rosenstiel|first12=Stefan|last12=Schreiber|date=March 5, 2017|work=Gastroenterology|volume=152|issue=4|pages=799–811.e7|doi=10.1053/j.gastro.2016.11.010|pmid=27866880}}</ref>
*2003 – Hensel-Research Prize, Kiel University
*2017 – Schleswig-Holstein Excellence Chair


==Selected articles==
=== Molekulare Profilerstellung und Biomarker für Krankheiten ===
*Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K., ... & Schreiber, S. (2007). A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature genetics, 39(2), 207–211.
Rosenstiels Arbeit konzentriert sich auch auf die Entwicklung von Biomarkern für chronische Entzündungskrankheiten und Krebs. Hier setzte er vor allem Multi-omics-Techniken ein, z.B. Transcriptomics und Methylomics<ref>{{Cite journal|title=Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing|date=December 5, 2012|work=Nature Genetics|volume=44|issue=12|pages=1316–1320|doi=10.1038/ng.2469|pmid=23143595|last=Richter|first=J.|last2=Schlesner|first2=M.|last3=Hoffmann|first3=S.|last4=Kreuz|first4=M.|last5=Leich|first5=E.|last6=Burkhardt|first6=B.|last7=Rosolowski|first7=M.|last8=Ammerpohl|first8=O.|last9=Wagener|first9=R.|last10=Bernhart|first10=S. H.|last11=Lenze|first11=D.|last12=Szczepanowski|first12=M.|last13=Paulsen|first13=M.|last14=Lipinski|first14=S.|last15=Russell|first15=R. B.|last16=Adam-Klages|first16=S.|last17=Apic|first17=G.|last18=Claviez|first18=A.|last19=Hasenclever|first19=D.|last20=Hovestadt|first20=V.|last21=Hornig|first21=N.|last22=Korbel|first22=J. O.|last23=Kube|first23=D.|last24=Langenberger|first24=D.|last25=Lawerenz|first25=C.|last26=Lisfeld|first26=J.|last27=Meyer|first27=K.|last28=Picelli|first28=S.|last29=Pischimarov|first29=J.|last30=Radlwimmer|first30=B.|url=https://nbn-resolving.org/urn:nbn:de:bvb:384-opus4-794341}}</ref><ref>{{Cite journal|title=A functional methylome map of ulcerative colitis|first=Robert|last=Häsler|first2=Zhe|last2=Feng|first3=Liselotte|last3=Bäckdahl|first4=Martina E.|last4=Spehlmann|first5=Andre|last5=Franke|first6=Andrew|last6=Teschendorff|first7=Vardhman K.|last7=Rakyan|first8=Thomas A.|last8=Down|first9=Gareth A.|last9=Wilson|first10=Andrew|last10=Feber|first11=Stephan|last11=Beck|first12=Stefan|last12=Schreiber|first13=Philip|last13=Rosenstiel|date=November 5, 2012|work=Genome Research|volume=22|issue=11|pages=2130–2137|doi=10.1101/gr.138347.112|pmid=22826509|pmc=3483542}}</ref> und Mikrobiomanalysen<ref>{{Cite journal|title=Metabolic Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases|first=Konrad|last=Aden|first2=Ateequr|last2=Rehman|first3=Silvio|last3=Waschina|first4=Wei-Hung|last4=Pan|first5=Alesia|last5=Walker|first6=Marianna|last6=Lucio|first7=Alejandro Mena|last7=Nunez|first8=Richa|last8=Bharti|first9=Johannes|last9=Zimmerman|first10=Johannes|last10=Bethge|first11=Berenice|last11=Schulte|first12=Dominik|last12=Schulte|first13=Andre|last13=Franke|first14=Susanna|last14=Nikolaus|first15=Johann Oltmann|last15=Schroeder|first16=Doris|last16=Vandeputte|first17=Jeroen|last17=Raes|first18=Silke|last18=Szymczak|first19=Georg H.|last19=Waetzig|first20=Rainald|last20=Zeuner|first21=Philippe|last21=Schmitt-Kopplin|first22=Christoph|last22=Kaleta|first23=Stefan|last23=Schreiber|first24=Philip|last24=Rosenstiel|date=November 5, 2019|work=Gastroenterology|volume=157|issue=5|pages=1279–1292.e11|doi=10.1053/j.gastro.2019.07.025|pmid=31326413|accessdate=free}}</ref> um Vorhersagen für individuelle Krankheitsverläufe zu entwickeln und Patienten für verschiedene zielgerichtete Therapien zu stratifizieren. Während der COVID-19-Pandemie war er Gründungsmitglied des DeCOI-Konsortiums und leitete Analysen, die Signaturen der Megakaryozyten-Expression als Marker für den tödlichen Krankheitsverlauf identifizierten.<ref>{{Cite journal|title=Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19|date=December 15, 2020|work=Immunity|volume=53|issue=6|pages=1296–1314.e9|doi=10.1016/j.immuni.2020.11.017|pmid=33296687|pmc=7689306|last=Bernardes|first=Joana P.|last2=Mishra|first2=Neha|last3=Tran|first3=Florian|last4=Bahmer|first4=Thomas|last5=Best|first5=Lena|last6=Blase|first6=Johanna I.|last7=Bordoni|first7=Dora|last8=Franzenburg|first8=Jeanette|last9=Geisen|first9=Ulf|last10=Josephs-Spaulding|first10=Jonathan|last11=Köhler|first11=Philipp|last12=Künstner|first12=Axel|last13=Rosati|first13=Elisa|last14=Aschenbrenner|first14=Anna C.|last15=Bacher|first15=Petra|last16=Baran|first16=Nathan|last17=Boysen|first17=Teide|last18=Brandt|first18=Burkhard|last19=Bruse|first19=Niklas|last20=Dörr|first20=Jonathan|last21=Dräger|first21=Andreas|last22=Elke|first22=Gunnar|last23=Ellinghaus|first23=David|last24=Fischer|first24=Julia|last25=Forster|first25=Michael|last26=Franke|first26=Andre|last27=Franzenburg|first27=Sören|last28=Frey|first28=Norbert|last29=Friedrichs|first29=Anette|last30=Fuß|first30=Janina}}</ref>
*Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., ... & Penninger, J. M. (2012). ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 487(7408), 477–481.
*Aden, K., Tran, F., Ito, G. O., Sheibani-Tezerji, R., Lipinski, S., Kuiper, J. W., ... & Rosenstiel, P. (2018). ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS–STING. Journal of Experimental Medicine, 215(11), 2868–2886.
*Bernardes, J. P., Mishra, N., Tran, F., Bahmer, T., Best, L., Blase, J. I., ... & Rosenstiel, P. (2020). Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity, 53(6), 1296–1314.
*Fazio, A., Bordoni, D., Kuiper, J. W., Weber-Stiehl, S., Stengel, S. T., Arnold, P., ... & Rosenstiel, P. (2022). DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon. Nature Communications, 13(1), 6266.


==References==
== Awards and honors ==
{{reflist}}


{{DEFAULTSORT:Rosenstiel, Philip}}
* 2001 - Empfänger des Graduiertenstipendiums der Novartis Stiftung für therapeutische Forschung 2003 - Hensel-Forschungspreis, Universität Kiel 2017 - Schleswig-Holstein Exzellenz Lehrstuhl
[[Category:Physicians]]

[[Category:University of Kiel alumni]]
== Selected articles ==
[[Category:Tufts University alumni]]

[[Category:Academic staff of the University of Kiel]]
* Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K., ... & Schreiber, S. (2007). A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature genetics, 39(2), 207–211.
[[Category:21st-century physicians]]
* Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., ... & Penninger, J. M. (2012). ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 487(7408), 477–481.
[[Category:Year of birth missing (living people)]]
* Aden, K., Tran, F., Ito, G. O., Sheibani-Tezerji, R., Lipinski, S., Kuiper, J. W., ... & Rosenstiel, P. (2018). ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS–STING. Journal of Experimental Medicine, 215(11), 2868–2886.
[[Category:Living people]]
* Bernardes, J. P., Mishra, N., Tran, F., Bahmer, T., Best, L., Blase, J. I., ... & Rosenstiel, P. (2020). Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity, 53(6), 1296–1314.
* Fazio, A., Bordoni, D., Kuiper, J. W., Weber-Stiehl, S., Stengel, S. T., Arnold, P., ... & Rosenstiel, P. (2022). DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon. Nature Communications, 13(1), 6266.

== References ==

[[Category:Mediziner (21. Jahrhundert)]]
[[Category:Hochschullehrer (Christian-Albrechts-Universität zu Kiel)]]
[[Category:Absolvent der Christian-Albrechts-Universität zu Kiel]]
[[Category:Mediziner]]

Revision as of 06:16, 6 February 2024

Philip Rosenstiel
NationalityGerman
Occupation(s)Medical doctor, academic, and full university professor
Academic background
EducationDoctor of Medicine
Alma materKiel University
Tufts University
Academic work
InstitutionsKiel University

Philip Rosenstiel is a German medical doctor and an academic. He is director of the Institute of Clinical Molecular Biology and a professor of clinical molecular biology at Kiel University.[1]

Rosenstiel is most known for his work on the pathophysiology of chronic inflammatory diseases, primarily focusing on developing innovative biomarkers and new therapeutic approaches. His work has been published in academic journals including Nature, Nature Genetics, Cell Metabolism and Immunity.[2]

Education

Rosenstiel obtained a degree in medicine in 2001 from Kiel University. During this time, he also went for training to Tufts University in Boston as part of a scholarship from the BMEP and the Studienstiftung.[1]

Career

Rosenstiel's academic career began as a BMEP research fellow at the Jackson Laboratory from 1997 to 1998. He subsequently held the position of postdoctoral fellow at the Max Planck Institute for Molecular Genetics between 2005 and 2007. He served as a professor of Molecular and Marine Medicine at Kiel University from 2007 to 2012. Following this, he was appointed as a professor of molecular medicine between 2012 and 2016. Since 2012, he has been the director of the Institute of Clinical Molecular Biology, and since 2016 a professor of clinical molecular biology at Kiel University.[1]

Rosenstiel has been a member of the steering board of the International Human Epigenome Consortium since 2017[3] and is spokesperson of the Precision Health in Schleswig-Holstein, a governance body to foster clinical translational research in Schleswig-Holstein. Since 2022, he has been serving as vice-dean for research at the Medical Faculty in Kiel.[4]

Research

Rosenstiel has employed methods from systems immunology and utilized genomic techniques such as single-cell analysis to create novel biomarkers and explore innovative therapeutic strategies. He contributed to the pilot phase of the 1000 Genomes Project, participated in the German International Cancer Genome Consortium (ICGC) on malignant lymphoma and led the large European Horizon 2020 Project on Systems Medicine in Chronic Inflammation (SYSCID).[5][6] He has authored publications with a specific focus on the pathophysiology of chronic inflammatory diseases, including articles in peer-reviewed journals.[2] He has authored over 450 scientific publications until end of 2023 with a specific focus on chronic inflammatory diseases. In December 2023 he had an h-index over 113 and his articles received over 76908 citations.[2]

Pathophysiology of chronic inflammatory diseases

Rosenstiel's work on mechanisms of chronic inflammatory diseases, particularly human chronic inflammatory bowel diseases (IBD), investigates the role of the intestinal epithelium for the crosstalk between the microbiota and mucosal immune responses.[7][8][9] A particular focus has been on the role of autophagy and ER stress as basic principles of epithelial differentiation and Paneth cell function.[10][11][12] His showed a link between the defective removal of RNA nucleotides during proliferation of intestinal epithelial cells, mucosal inflammation and colorectal cancer formation.[13] With Josef Penninger and others, he demonstrated that a lack of the ACE2 enzyme, responsible for controlling the renin-angiotensin system, disrupts the balance of the amino acid tryptophan in the intestinal epithelium. This in turn leads to impaired antimicrobial peptide production in the gut, leading to increased susceptibility to colitis and intestinal inflammation.[14] He has contributed to early clinical therapy developments, e.g. IL-6 transsignalling inhibition in IBD (olamkicept phase II trial) or sterile-filtered fecal material transfer for C. difficile infection.[15][16]

Molecular profiling and biomarkers of disease

Rosenstiel's work has also focused on biomarker development in chronic inflammatory diseases and cancer. Here, he mostly employed multi-omics techniques, e.g. transcriptomics and methylomics[17][18] and microbiome analysis[19] to develop predictions for individual trajectories of disease and to stratify patients for different targeted therapies. During the COVID-19 pandemic, he was founding member of the DeCOI consortium and led analyses, which identified megakaryocyte expression signatures as a marker for fatal disease course.[20]

Awards and honors

  • 2001 – Recipient of the Graduate stipend of the Novartis Stiftung für therapeutische Forschung
  • 2003 – Hensel-Research Prize, Kiel University
  • 2017 – Schleswig-Holstein Excellence Chair

Selected articles

  • Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K., ... & Schreiber, S. (2007). A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature genetics, 39(2), 207–211.
  • Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., ... & Penninger, J. M. (2012). ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 487(7408), 477–481.
  • Aden, K., Tran, F., Ito, G. O., Sheibani-Tezerji, R., Lipinski, S., Kuiper, J. W., ... & Rosenstiel, P. (2018). ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS–STING. Journal of Experimental Medicine, 215(11), 2868–2886.
  • Bernardes, J. P., Mishra, N., Tran, F., Bahmer, T., Best, L., Blase, J. I., ... & Rosenstiel, P. (2020). Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity, 53(6), 1296–1314.
  • Fazio, A., Bordoni, D., Kuiper, J. W., Weber-Stiehl, S., Stengel, S. T., Arnold, P., ... & Rosenstiel, P. (2022). DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon. Nature Communications, 13(1), 6266.

References

  1. ^ a b c "Prof. Dr. med. Philip Rosenstiel". Medizinische Fakultät.
  2. ^ a b c "Philip Rosenstiel". scholar.google.com.
  3. ^ "SYSCID is welcomed to the IHEC family!". syscid.eu.
  4. ^ "Was ist Precision Health in Schleswig-Holstein?". precision-health-sh.de.
  5. ^ Schultze, Joachim L.; Rosenstiel, Philip; Rosenstiel, P. (April 17, 2018). "Systems Medicine in Chronic Inflammatory Diseases". Immunity. 48 (4): 608–613. doi:10.1016/j.immuni.2018.03.022. PMID 29669240.
  6. ^ The 1000 Genomes Project Consortium; et al. (October 5, 2010). "A map of human genome variation from population-scale sequencing". Nature. 467 (7319): 1061–1073. Bibcode:2010Natur.467.1061T. doi:10.1038/nature09534. PMC 3042601. PMID 20981092.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  7. ^ Rosenstiel, Philip; et al. (April 5, 2003). "TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells". Gastroenterology. 124 (4): 1001–1009. doi:10.1053/gast.2003.50157. PMID 12671897.
  8. ^ Couturier-Maillard, Aurélie; et al. (February 1, 2013). "NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer". Journal of Clinical Investigation. 123 (2): 700–711. doi:10.1172/JCI62236. PMC 3561825. PMID 23281400.
  9. ^ Lipinski, Simone; et al. (December 26, 2012). "RNAi screening identifies mediators of NOD2 signaling: Implications for spatial specificity of MDP recognition". Proceedings of the National Academy of Sciences. 109 (52): 21426–21431. doi:10.1073/pnas.1209673109. PMC 3535590. PMID 23213202.
  10. ^ Hampe, Jochen; et al. (February 5, 2007). "A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1". Nature Genetics. 39 (2): 207–211. doi:10.1038/ng1954. PMID 17200669. S2CID 24615261.
  11. ^ Adolph, Timon E.; et al. (November 14, 2013). "Paneth cells as a site of origin for intestinal inflammation". Nature. 503 (7475): 272–276. Bibcode:2013Natur.503..272A. doi:10.1038/nature12599. PMC 3862182. PMID 24089213.
  12. ^ Aden, Konrad; et al. (November 5, 2018). "ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING". The Journal of Experimental Medicine. 215 (11): 2868–2886. doi:10.1084/jem.20171029. PMC 6219748. PMID 30254094.
  13. ^ K, Aden; et al. (January 5, 2019). "Epithelial RNase H2 Maintains Genome Integrity and Prevents Intestinal Tumorigenesis in Mice". Gastroenterology. 156 (1): 145–159.e19. doi:10.1053/j.gastro.2018.09.047. PMC 6311085. PMID 30273559.
  14. ^ Hashimoto, Tatsuo; et al. (July 5, 2012). "ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation". Nature. 487 (7408): 477–481. Bibcode:2012Natur.487..477H. doi:10.1038/nature11228. PMC 7095315. PMID 22837003.
  15. ^ Schreiber, Stefan; et al. (June 5, 2021). "Therapeutic Interleukin-6 Trans-signaling Inhibition by Olamkicept (sgp130Fc) in Patients With Active Inflammatory Bowel Disease". Gastroenterology. 160 (7): 2354–2366.e11. doi:10.1053/j.gastro.2021.02.062. PMID 33667488.
  16. ^ Ott, Stephan J.; et al. (March 5, 2017). "Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection". Gastroenterology. 152 (4): 799–811.e7. doi:10.1053/j.gastro.2016.11.010. hdl:21.11116/0000-0002-F84B-3. PMID 27866880.
  17. ^ Richter, J.; et al. (December 5, 2012). "Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing". Nature Genetics. 44 (12): 1316–1320. doi:10.1038/ng.2469. PMID 23143595. S2CID 33638575.
  18. ^ Häsler, Robert; et al. (November 5, 2012). "A functional methylome map of ulcerative colitis". Genome Research. 22 (11): 2130–2137. doi:10.1101/gr.138347.112. PMC 3483542. PMID 22826509.
  19. ^ Aden, Konrad; et al. (November 5, 2019). "Metabolic Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases". Gastroenterology. 157 (5): 1279–1292.e11. doi:10.1053/j.gastro.2019.07.025. PMID 31326413.
  20. ^ Bernardes, Joana P.; et al. (December 15, 2020). "Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19". Immunity. 53 (6): 1296–1314.e9. doi:10.1016/j.immuni.2020.11.017. PMC 7689306. PMID 33296687.