Ir al contenido

Diferencia entre revisiones de «Ecuaciones de Cauchy-Riemann»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
WikitanvirBot (discusión · contribs.)
Sin resumen de edición
Línea 19: Línea 19:


<center>
<center>
<math>f'(z_0)=u_x(x_0,y_0)+iv_x(x_0,y_0)=v_y(x_0,y_0)-iu_y(x_0,y_0)</math>
<math>f '(z_0)=u_x(x_0,y_0)+iv_x(x_0,y_0)=v_y(x_0,y_0)-iu_y(x_0,y_0)</math>
</center>
</center>



Revisión del 17:47 25 may 2011

Las ecuaciones de Cauchy-Riemann son dos ecuaciones diferenciales parciales que son básicas en el análisis de funciones complejas de variable compleja, debido a que su verificación constituye una condición necesaria (aunque no suficiente) para la derivabilidad de este tipo de funciones.

Sea una función compleja , con . Se sabe que se puede descomponer en suma de dos funciones reales de dos variables y , de manera que . Si la función es derivable en un punto entonces deben verificarse las condiciones de Cauchy-Riemann:


donde significa la derivada parcial de la función respecto a la variable , usualmente simbolizado . Análogamente para , y .

Además se cumple que el valor de la derivada en el punto, de existir, debe ser:

Ejemplo

Veamos un ejemplo donde derivable en todo número complejo y por lo tanto las ecuaciones de Cauchy-Riemann se verificarán en cualquier . Consideramos la función . Ahora veamos esta función en coordenadas cartesianas.

por lo tanto las parte real e imaginaria de la función son y respectivamente. Derivado con respecto a e es inmediato que

y que

.

Por último verifiquemos la condición sobre las derivadas. La derivada (ver Complex analysis) de es claramente (las reglas para derivar funciones complejas es similar a las funciones reales) por lo tanto

Otras formas de expresar las ecuaciones

Algunas formas equivalentes de expresar las condiciones de Cauchy-Riemann son las siguientes:

Observación

Hay que hacer notar que las ecuaciones de Cauchy-Riemann no constituyen una condición suficiente, por lo que no valen por sí solas para demostrar la derivabilidad de una función en un punto.

Sin embargo, sí tenemos condiciones suficientes de derivabilidad si la función, además de cumplir las ecuaciones de Cauchy-Riemann, se puede descomponer en dos funciones u y v con derivadas parciales primeras continuas en un entorno de .

Aplicación

Se dice que una función de clase de dos variables con imagen en los reales es armónica cuando verifica la ecuación de Laplace:

.

No es difícil verificar que dos funciones de clase que verifiquen las condiciones de Cauchy-Riemann son ambas armónicas. En tal caso se dice que ellas son armónicas conjugadas...