Unbibium

élément chimique hypothétique de numéro atomique 122
Ceci est une version archivée de cette page, en date du 8 décembre 2016 à 03:00 et modifiée en dernier par Pere horus (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

L'unbibium est le nom provisoire donné par l'UICPA à l'élément chimique hypothétique de numéro atomique 122 (symbole provisoire Ubb). Dans la littérature scientifique, il est généralement appelé élément 122.

Unbibium
UnbiuniumUnbibiumUnbitrium
   
 
122
Ubb
 
               
               
                                   
                                   
                                                               
                                                               
   
                                           
Ubb
Tableau completTableau étendu
Position dans le tableau périodique
Symbole Ubb
Nom Unbibium
Numéro atomique 122
Groupe
Période 8e période
Bloc Bloc g
Famille d'éléments Superactinide[1]
Configuration électronique Peut-être[2] :
[Og] 8s2 8p1 7d1
Électrons par niveau d’énergie Peut-être :
2, 8, 18, 32, 32, 18, 9, 3
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
Divers
No CAS 54576-73-7[3]

Unités du SI & CNTP, sauf indication contraire.

Cet élément de la 8e période du tableau périodique appartiendrait à la série des superactinides, et ferait partie des éléments du bloc g. Sa configuration électronique serait, par application la règle de Klechkowski, [[[Oganesson|Og]]] 5g2 8s2, mais a été calculée, en prenant en compte les corrections induites par la chromodynamique quantique et la distribution relativiste de Breit-Wigner (en), notamment sous la forme [Og] 8s2 8p2 [4] ; d'autres résultats ont été obtenus par des méthodes un peu différentes.

Tentatives de synthèse

La synthèse de cet élément a été tentée par les deux acteurs habituels en matière de noyaux superlourds, à savoir l'Institut unifié de recherches nucléaires (JINR) de Doubna en Russie dès 1972 et le GSI de Darmstadt en Allemagne en 2000. Les deux laboratoires ont bombardé des cibles d'uranium 238 avec des ions zinc 66 pour le JINR, et zinc 70 pour le GSI, dans l'espoir de produire des noyaux d'unbibium 304 et d'unbibium 308 respectivement :

  à l'Institut unifié de recherches nucléaires par fusion chaude (Flerov et al. en 1972) avec une résolution de 5 mb
  au GSI en 2000 selon la même méthode mais avec une bien meilleure résolution.

Ces expériences infructueuses ont néanmoins montré que la détection d'unbibium nécessiterait d'atteindre des sensibilités aussi fines que quelques femtobarns, ce qui donne une idée du défi représenté par la recherche de ces noyaux atomiques.

L'annonce d'A. Marinov et al. en 2008 selon laquelle ils auraient détecté un taux de 10−11 à 10−12 atomes d'unbibium dans un dépôt naturel de thorium[5] a par conséquent été largement rejetée[6], bien que l'auteur suggère avoir mis en évidence un isomère stable d'un isotope d'unbibium qui se serait accumulé naturellement en raison de sa période radioactive supérieure à cent millions d'années ; il aurait, selon ses dires, soumis son article pour publication aux revues britanniques Nature et Nature Physics qui l'auraient toutes deux refusé[7].

Stabilité des nucléides de cette taille

Aucun superactinide n'a jamais été observé, et on ignore si l'existence d'un atome aussi lourd est physiquement possible.

Le modèle en couches du noyau atomique prévoit l'existence de nombres magiques[8] par type de nucléons en raison de la stratification des neutrons et des protons en niveaux d'énergie quantiques dans le noyau postulée par ce modèle, à l'instar de ce qu'il se passe pour les électrons au niveau de l'atome ; l'un de ces nombres magiques est 126, observé pour les neutrons mais pas encore pour les protons, tandis que le nombre magique suivant, 184, n'a jamais été observé : on s'attend à ce que les nucléides ayant environ 126 protons (unbihexium) et 184 neutrons soient sensiblement plus stables que les nucléides voisins, avec peut-être des périodes radioactives supérieures à la seconde, ce qui constituerait un « îlot de stabilité ».

La difficulté est que, pour les atomes superlourds, la détermination des nombres magiques semble plus délicate que pour les atomes légers[9], de sorte que, selon les modèles, le nombre magique suivant serait à rechercher pour Z compris entre 114 et 126.

Plus précisément, l’unbibium 306 pourrait être « doublement magique » avec 122 protons et 184 neutrons, selon l'une des versions de la théorie dite du « champ moyen relativiste » (RMF). L'unbibium fait partie des éléments dont il serait possible de produire, avec les techniques actuelles, des isotopes dans l'îlot de stabilité ; la stabilité particulière de tels nucléides serait due à un effet quantique de couplage des mésons ω[10], l'un des neuf mésons dits « sans saveur ».

Notes et références

  1. L'élément 122 n'ayant jamais été synthétisé ni a fortiori reconnu par l'UICPA, il n'est classé dans aucune famille d'éléments chimiques. On le range éventuellement parmi les superactinides à la suite des travaux de Glenn Seaborg sur l'extension du tableau périodique dans les années 1940, mais, en toute rigueur, il est chimiquement « non classé ».
  2. (en) Burkhard Fricke et Gerhard Soff, « Dirac-Fock-Slater calculations for the elements Z = 100, fermium, to Z = 173 », Atomic Data and Nuclear Data Tables, vol. 19, no 1,‎ , p. 83-95 (DOI 10.1016/0092-640X(77)90010-9, Bibcode 1977ADNDT..19...83F, lire en ligne)
  3. Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
  4. (en) Koichiro Umemoto et Susumu Saito, « Electronic Configurations of Superheavy Elements », Journal of the Physical Society of Japan, vol. 65,‎ , p. 3175-3179 (lire en ligne) DOI 10.1143/JPSJ.65.3175
  5. (en) A. Marinov, « Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th », arXiv.org,‎ (lire en ligne, consulté le )
  6. En raison semble-t-il à la fois du manque de fiabilité du mode opératoire aboutissant à ce résultat, d'inconsistances dans l'article soumis à publication, et des antécédents de M. Marinov en matière d'annonces prématurées d'éléments superlourds.
  7. Royal Society of Chemistry, Chemistry World, "Heaviest element claim criticised"
  8. Encyclopaedia Britannica : article « Magic Number », § « The magic numbers for nuclei ».
  9. (en) Robert V. F. Janssens, « Nuclear physics: Elusive magic numbers », Nature, vol. 435,‎ , p. 897-898(2) (DOI 10.1038/435897a, lire en ligne, consulté le )
  10. (en) G. Münzenberg, M. M. Sharma, A. R. Farhan, « α-decay properties of superheavy elements Z=113-125 in the relativistic mean-field theory with vector self-coupling of ω meson », Phys. Rev. C, vol. 71,‎ , p. 054310 (DOI 10.1103/PhysRevC.71.054310, lire en ligne)

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes



  1 2                               3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  H     He
2  Li Be   B C N O F Ne
3  Na Mg   Al Si P S Cl Ar
4  K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8  119 120 *    
  * 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142  


Métaux
  Alcalins  
  Alcalino-  
terreux
  Lanthanides     Métaux de  
transition
Métaux
  pauvres  
  Métal-  
loïdes
Non-
  métaux  
Halo-
  gènes  
Gaz
  nobles  
Éléments
  non classés  
Actinides
    Superactinides