Aller au contenu

« Isotopes de l'azote » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
compléments, sourçage + biblio
→‎Bibliographie : compl et wikicoquille corrigée
Ligne 297 : Ligne 297 :
* Hobson, K. A., Gloutney, M. L., & Gibbs, H. L. (1997). ''Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis''. Canadian Journal of Zoology, 75(10), 1720-1723 ([http://www.nrcresearchpress.com/doi/abs/10.1139/z97-799 résumé]).
* Hobson, K. A., Gloutney, M. L., & Gibbs, H. L. (1997). ''Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis''. Canadian Journal of Zoology, 75(10), 1720-1723 ([http://www.nrcresearchpress.com/doi/abs/10.1139/z97-799 résumé]).
* Hobson, K. A., Alisauskas, R. T., & Clark, R. G. (1993). ''[http://www.sethnewsome.org/sethnewsome/EE_files/Hobson%20et%20al.%201993.pdf Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet]''. Condor, 388-394.
* Hobson, K. A., Alisauskas, R. T., & Clark, R. G. (1993). ''[http://www.sethnewsome.org/sethnewsome/EE_files/Hobson%20et%20al.%201993.pdf Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet]''. Condor, 388-394.
* Kidd, K. A., Schindler, D. W., Hesslein, R. H., & Muir, D. C. G. (1995). ''Correlation between stable nitrogen isotope ratios and concentrations of organochlorines in biota from a freshwater food web''. Science of the Total Environment, 160, 381-390 (http://www.sciencedirect.com/science/article/pii/0048969795043717 résumé]).
* Kidd, K. A., Schindler, D. W., Hesslein, R. H., & Muir, D. C. G. (1995). ''Correlation between stable nitrogen isotope ratios and concentrations of organochlorines in biota from a freshwater food web''. Science of the Total Environment, 160, 381-390 ([http://www.sciencedirect.com/science/article/pii/0048969795043717 résumé]).
* Macko, S. A., Fogel, M. L., Hare, P. E., & Hoering, T. C. (1987). ''[http://www.sethnewsome.org/sethnewsome/EE_files/Macko%20et%20al.%201987.pdf Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms].'' Chemical Geology: Isotope Geoscience section, 65(1), 79-92.
* Macko, S. A., Fogel, M. L., Hare, P. E., & Hoering, T. C. (1987). ''[http://www.sethnewsome.org/sethnewsome/EE_files/Macko%20et%20al.%201987.pdf Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms].'' Chemical Geology: Isotope Geoscience section, 65(1), 79-92.
* Macko, S. A. (1982). Stable nitrogen isotope ratios as tracers of organic geochemical processes. Dissertation Abstracts International Part B: Science and Engineering [DISS. ABST. INT. PT. B- SCI. & ENG.]., 42(7), 1982
* Macko, S. A., Estep, M. L. F., Engel, M. H., & Hare, P. E. (1986). Kinetic fractionation of stable nitrogen isotopes during amino acid transamination. Geochimica et Cosmochimica Acta, 50(10), 2143-2146. ([http://www.sciencedirect.com/science/article/pii/0016703786900682 résumé])
* Macko, S. A., & Estep, M. L. (1984). ''[http://jan.ucc.nau.edu/aa238/Collins,%20Harrop%20reference%201.pdf Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter]''. Organic Geochemistry, 6, 787-790.
* Nadelhoffer, K. J., & Fry, B. (1994). '''Nitrogen isotope studies in forest ecosystems'''. Stable isotopes in ecology and environmental science. Blackwell, Oxford, 316.
* Schoeninger, M. J., DeNiro, M. J., & Tauber, H. (1983). [http://www.anthro.ucsd.edu/faculty-staff/profiles/files/Tauber%20etal.1983.pdf ''Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet]''. Science, 220(4604), 1381-1383.
* Schoeninger, M. J., DeNiro, M. J., & Tauber, H. (1983). [http://www.anthro.ucsd.edu/faculty-staff/profiles/files/Tauber%20etal.1983.pdf ''Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet]''. Science, 220(4604), 1381-1383.
* Schoeninger, M. J., & DeNiro, M. J. (1984). ''Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals''. Geochimica et Cosmochimica Acta, 48(4), 625-639 (http://www.sciencedirect.com/science/article/pii/0016703784900917 résumé]).
* Schoeninger, M. J., & DeNiro, M. J. (1984). ''Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals''. Geochimica et Cosmochimica Acta, 48(4), 625-639 (http://www.sciencedirect.com/science/article/pii/0016703784900917 résumé]).

Version du 14 septembre 2014 à 10:58

L'azote (N) possède 16 isotopes connus de nombre de masse variant de 10 à 25, ainsi qu'un isomère nucléaire, 11mN. Deux d'entre eux sont stables et présents dans la nature, l'azote 14 (14N) et l'azote 15 (15N), le premier représentant la quasi-totalité de l'azote présent (99,64 %). Ils sont très utilisés pour les études isotopiques notamment du cycle de l'azote[1] et des réseaux trophiques

On assigne à l'azote une masse atomique standard de 14,0067 u.

Tous les radioisotopes ont une durée de vie courte, l'azote 13 (13N) ayant la demi-vie la plus longue, 9,965 minutes, tous les autres ayant une demi-vie inférieure à 7,15 secondes, et la plupart d'entre eux inférieure à 625 ms.

Les isotopes plus légers que les isotopes stables se désintègrent en général en isotopes du carbone, par émission de proton ou émission de positron+) et les plus lourds par désintégration β- en isotopes de l'oxygène.

Isotopes notables

Azote 13

L'azote 13 (13N) est l'isotope de l'azote dont le noyau est constitué de 7 protons et de 6 neutrons. C'est un radioisotope, notamment issu de la dégradation de l'oxygène 13, qui se désintègre en carbone 13 par émission de positron, et est pour cette raison utilisé en tomographie par émission de positron.

Azote 14

L'azote 14 (14N) est l'isotope de l'azote dont le noyau est constitué de 7 protons et de 7 neutrons. C'est l'un des deux isotopes stables de l'azote, et représente 99,636 % de l'azote présent sur Terre.

L'azote 14 est l'un des rares isotopes stables avec un nombre impair à la fois de protons et de neutrons. Chacun contribuant au spin nucléaire pour plus ou moins 1/2, résultant pour un moment magnétique total de spin de 1.

Comme tous les éléments plus lourds que le lithium, on pense que la source originale de 14N (et de 15N) dans l'Univers est la nucléosynthèse stellaire, où il est produit lors du cycle CNO.

L'azote 14 est la source du carbone 14 naturel : certaines radiations cosmiques provoquent une réaction nucléaire avec le 14N de la haute atmosphère, créant du 14C. Ce radioisotope se désintègre ensuite de nouveau en azote 14 avec une demi-vie de quelques milliers d'années.

Azote 15

L'azote 15 (15N) est l'isotope de l'azote dont le noyau est constitué de 7 protons et de 8 neutrons. C'est le second des deux isotopes stables de l'azote, et représente 0,364 % de l'azote présent sur Terre.

Cet isotope est souvent utilisé en recherche agricole et médicale, par exemple dans l'expérience de Meselson-Stahl, pour établir la nature de la réplication de l'ADN[2]. Une extension de cette recherche a résulté en le développement de méthode de sonde à isotope stable à base d'ADN qui permet d'observer les liens entre les fonctions métaboliques et l'identité taxonomique des micro-organismes de l'environnement, sans avoir à isoler la culture[3],[4]. L'azote 15 est largement utilisé pour tracer les minéraux composés d'azote (en particulier les fertilisants), et; lorsqu'il est utilisé en combinaison avec d'autres traceurs isotopiques, il est un très important traceur pour décrire l'évolution des polluants organo-nitrés[5],[6].

L'azote 15 est fréquemment utilisé en spectroscopie RMN, car contrairement à l'abondant azote 14 qui a un spin entier et donc un moment quadripolaire, 15N a un spin de 1/2-, ce qui offre des avantages en RMN, comme une épaisseur de ligne plus fine. Les protéines peuvent être marquées isotopiquement en les cultivant sur un milieu contenant 15N comme seule source en azote. L'azote 15 peut aussi être utilisé pour marquer les protéines en protéomique quantitative (SILAC (en)).

Aussi, le ratio 15N/14N dans un organisme peut donner des indices sur son régime, un déplacement vers le haut dans la chaîne alimentaire tendant à concentrer l'isotope 15N, de 3 à 4 ‰ à chaque étape dans la chaîne alimentaire.

L'azote 15 peut être produit à partir de deux sources, l'émission de positron à partir de l'oxygène 15[7] et par désintégration β- du carbone 15.

Azote 16

L'azote 16 (16N) est l'isotope instable de l'azote dont le noyau est constitué de 7 protons et de 9 neutrons. Sa période est de 7,13 s. Il se désintègre en oxygène 16 en émettant un électron et un rayon gamma spécialement énergétique (10,419 MeV). Il est notamment formé dans le cœur des réacteurs à eau par activation de l'oxygène de l'eau par le flux neutronique rapide. Le rayonnement gamma de l'azote 16 est la principale source de rayonnement au voisinage du circuit primaire des réacteurs à eau. Du fait de la période très courte de son émetteur, ce rayonnement disparait dans les tous premiers instants suivants l'arrêt du réacteur.

Table des isotopes

Symbole
de l'isotope
Z (p) N (n) masse isotopique (u) demi-vie mode(s) de
désintégration[8]
isotope(s)-fils[n 1] spin nucléaire composition isotopique
représentative
(fraction molaire)
gamme de
variations naturelles
(fraction molaire)
énergie d'excitation
10N 7 3 10,04165(43) 200(140)e s
[2,3(16) MeV]
p 9C (2−)
11N 7 4 11,02609(5) 590(210)e s
[1,58(+75−52) MeV]
p 10C 1/2+
11mN 740(60) keV 6,90(80)e s 1/2−
12N 7 5 12,0186132(11) 11,000(16) ms β+ (96,5 %) 12C 1+
β+, α (3,5 %) 8Be[n 2]
13N[n 3] 7 6 13,00573861(29) 9,965(4) min β+ 13C 1/2−
14N 7 7 14,0030740048(6) Stable 1+ 0,99636(20) 0,99579–0,99654
15N 7 8 15,0001088982(7) Stable 1/2− 0,00364(20) 0,00346–0,00421
16N 7 9 16,0061017(28) 7,13(2) s β (99,99 %) 16O 2−
β, α (0,001 %) 12C
17N 7 10 17,008450(16) 4,173(4) s β, n (95,0 %) 16O 1/2−
β (4,99 %) 17O
β, α (0,0025 %) 13C
18N 7 11 18,014079(20) 622(9) ms β (76,9 %) 18O 1−
β, α (12,2 %) 14C
β, n (10,9 %) 17O
19N 7 12 19,017029(18) 271(8) ms β, n (54,6 %) 18O (1/2−)
β (45,4 %) 19O
20N 7 13 20,02337(6) 130(7) ms β, n (56,99 %) 19O
β (43,00 %) 20O
21N 7 14 21,02711(10) 87(6) ms β, n (80,0 %) 20O 1/2−#
β (20,0 %) 21O
22N 7 15 22,03439(21) 13,9(14) ms β (65,0 %) 22O
β, n (35,0 %) 21O
23N 7 16 23,04122(32)# 14,5(24) ms
[14,1(+12−15) ms]
β 23O 1/2−#
24N 7 17 24,05104(43)# <52 ns n 23N
25N 7 18 25,06066(54)# <260 ns 1/2−#
  1. Isotopes stables en gras
  2. Se désintègre immédiatement en deux particules α, pour une réaction nette : 12N → 34He + e+
  3. Utilisé en tomographie par émission de positrons

Notes

  • La précision de l'abondance isotopique et de la masse atomique est limitée par des variations. Les échelles de variations données sont normalement valables pour tout matériel terrestre normal.
  • Les valeurs marquées # ne sont pas purement dérivées des données expérimentales, mais aussi au moins en partie à partir des tendances systématiques. Les spins avec des arguments d'affectation faibles sont entre parenthèses.
  • Les incertitudes sont données de façon concise entre parenthèses après la décimale correspondante. Les valeurs d'incertitude dénotent un écart-type, à l'exception de la composition isotopique et de la masse atomique standard de l'IUPAC qui utilisent des incertitudes élargies

Notes et références

  1. Macko, S. A. (1982). Stable nitrogen isotope ratios as tracers of organic geochemical processes. Dissertation Abstracts International Part B: Science and Engineering[DISS. ABST. INT. PT. B- SCI. & ENG.]., 42(7), 1982 (résumé).
  2. (en) Meselson M., Stahl F.W., « The replication of DNA in E. coli », Proc. Natl. Acad. Sci. USA, vol. 44,‎ , p. 671–682 (PMID 16590258, PMCID 528642, DOI 10.1073/pnas.44.7.671, Bibcode 1958PNAS...44..671M)
  3. (en) Radajewski S., McDonald I.R., Murrell J.C., « Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms », Curr. Opin. Biotechnol, vol. 14,‎ , p. 296–302
  4. Cupples, A.M., E.A. Shaffer, J.C. Chee-Sanford, and G.K. Sims. 2007. DNA buoyant density shifts during 15N DNA stable isotope probing. Microbiological Res. 162:328-334.
  5. Marsh, K. L., G. K. Sims, and R. L. Mulvaney. 2005. Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14C- and 15N-labeled urea added to soil. Biol. Fert. Soil. 42:137-145.
  6. Bichat, F., G.K. Sims, and R.L. Mulvaney. 1999. Microbial utilization of heterocyclic nitrogen from atrazine. Soil Sci. Soc. Am. J. 63:100-110.
  7. CRC HANDBOOK of CHEMISTRY and PHYSICS, 64 th EDITION, 1983-1984; page B-234
  8. http://www.nucleonica.net/unc.aspx

Articles connexes

Bibliographie