跳转到内容

熱電效應:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
X321879645留言 | 贡献
→‎塞贝克效应:​ 內容整併
X321879645留言 | 贡献
→‎汤姆孙效应:​ 內容整併
第41行: 第41行:
帕尔帖效应即為塞贝克效应的反效应,即当在两种金属回路中加入电源产生电势后,不同的金属接触点会有一个温差。
帕尔帖效应即為塞贝克效应的反效应,即当在两种金属回路中加入电源产生电势后,不同的金属接触点会有一个温差。


==汤姆效应==
==汤姆效应==
当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆热)。或者反过来,当一根金属棒的两端温度不同时,金属棒两端会形成电势差。这一现象后叫汤姆孙效应(Thomson effect)
当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆热)。'''汤姆森效应'''({{lang-en|Thomson effect}})是英国物理学家[[威廉·汤姆森]]于1854年发现的:将一根导线通恒定电流,由于导线有电阻而发热。再将这根带电的导线的某小局部加热;使它产生[[温度梯度]]。这根导线就在原有发热的基础上,出现吸热或放热的现象。<ref>A.11 Thermoelectric effect" Eng.fsu.edu.2002-02-01.</ref>或者反过来,当一根金属棒的两端温度不同时,金属棒两端会形成电势差。

一個金屬(或半導體)材料的帕爾帖係數並不是一個定值,也會隨著溫度而改變。在一個具有溫度梯度的導體中,每個位置都可以視為是具有不同帕爾帖係數的材料。當電流通過時,不同的位置會各自產生帕爾帖效應,造成局部的吸熱或放熱。由於金屬的[[熱導率]]較高,這些局部的吸收或放出的[[热能]]會分散至整個導體,因而造成導體整體的吸熱或放熱。吸热或放热要由恒定电流的方向和导线热梯度的方向而决定。这种现象称为汤姆森效应,汤姆森效应並不會在均匀温度的通电流导体中出现。


==参见==
==参见==

2018年6月8日 (五) 12:09的版本

热电效应(英語:Thermoelectric effect)是一個由温差产生电压的直接转换,且反之亦然。简单的放置一个热电装置,当他们的两端有温差时会产生一个电压,而当一个电压施加于其上,他也会产生一个温差。这个效应可以用来产生电能、测量温度,冷却或加热物体。因为这个加热或制冷的方向决定于施加的电压,热电装置让温度控制变得非常容易。

一般来说,热电效应这个术语包含了三个分别经定义过的效应,赛贝克效应(Seebeck effect,由Thomas Johann Seebeck发现 。)、帕尔帖效应(Peltier effect,由Jean-Charles Peltier发现。),与汤姆森效应(Thomson effect,由威廉·汤姆孙发现)。在很多教科书上,热电效应也被称为帕尔帖-塞贝克效应(Peltier–Seebeck effect)。它同时由法国物理学家讓·查爾斯·佩爾蒂(Jean Charles Athanase Peltier)与爱沙尼亚裔德國物理学家 托马斯·约翰·塞贝克(Thomas Johann Seebeck)分別独立发现。 还有一个术语叫焦耳加热,也就是說當一个电压通过一个阻抗物质上,即會產生熱,它是多少有关系的,尽管它不是一个普通的热电效应术语(由於热电裝置的非理想性,它通常被視為一個產生損耗的機制)。帕尔帖-塞贝克效应与汤姆孙效应是可逆的,但是焦耳加热不可逆。

塞贝克效应

德国物理学家托马斯·约翰·塞贝克于1821年发现,将二种不同金属各自的二端分别连接构成的回路,如果两种金属的兩個结点处温度不同,就会在这样的线路内发生电流。[1]这种现象称为赛贝克效应(Seebeck Effect)。

塞贝克发现,当两种不同金属组成闭合回路且兩结点处温度不同时,指南针的指针会发生偏转。于是他认为温差使金属产生了磁场。但是当时塞贝克并没有发现金属回路中的电流,所以他把这个现象叫做“热磁效应”。后来,丹麦物理学家汉斯·奥斯特重新研究了这个现象并称之为“热电效应”。

不同的金属导体(或半导体)具有不同的自由电子密度,当两种不同的金属导体相互接触时,在接触面上的电子就会扩散以消除电子密度的差异,在两块金属的另两个端点形成稳定的电压,电子的扩散速率与接触区的温度成正比。由此产生的电压通常每开尔文温差只有几微伏。 而不同溫度的相同金屬(或半导体)也具有不同的自由电子密度,所以只要维持金属兩端的温差,也能使电子持续扩散,在金属的两个端点形成稳定的电压。

不同的金属與半导体具有不同的塞貝克係數(所产生赛贝克效应大小不同),半導體與金屬的主因略有不同。半导体在不同的溫度下具有不同的载流子密度,當單一半导体兩端具有溫度差時,載子會扩散以消除密度的差异,因而造成電動勢。兩端的温度相差越大,则产生的赛贝克电位差越大。而金屬的自由电子密度與費米能階幾乎不會隨溫度改變,因此金屬的赛贝克效应遠小於半導體。金屬的赛贝克效应由電子的平均自由程來決定。若平均自由程隨溫度上升,則熱端的自由電子有較高的機會向冷端移動,此時的塞貝克係數為負值。反過來說,若電子的平均自由程隨溫度上升而下降,則冷端的自由電子有較高的機會流向熱端,塞貝克係數為正值。

在以下电路中,若電壓計兩端的溫度同為Tr

由塞贝克效应产生的电压可以表示成:

SASB是金属A和B的塞貝克係數T1T2是两块金属结合处的温度。塞贝克系数取决于温度和材料的分子结构。如果塞贝克系数在实验的温度范围内接近常数,以上方程可以近似成:

將兩種不同的金屬連接,並在兩接點給予溫度差,兩種金屬會分別產生各自的温差电动势。选用适当的二种不同金属製成热电偶,利用赛贝克效应可以直接测量溫差,或者将金属的一端设定到已知温度来测另一端的温度。当几个温差电偶连接在一起时叫做热电堆,用来制造更大的电压。塞贝克效应还可以用来鉴定合金的成分:将未知金属和已知金属连接,并保持温度不变,根据测得的电压可以算出未知金属的塞贝克系数,从而判断它的材料。若使用相同的金屬形成迴路,則會因為溫差造成的電動勢互相抵銷而無法觀察到赛贝克效应。

帕尔帖效应

传统上有时称帕尔贴效应是塞贝克效应,但此说法并不严谨。

与塞贝克效应不同,帕尔贴效应可以产生在两种不同金属的交界面,或者一种多相材料的不同相界间,也可以产生在非匀质导体的不同浓度梯度范围内。

当对上述三种材料嵌入回路中并施加电流时,金属1会对金属2或相1对相2,或浓度点C1与C2间)产生放热或吸热反应。[2]

帕尔帖效应即為塞贝克效应的反效应,即当在两种金属回路中加入电源产生电势后,不同的金属接触点会有一个温差。

汤姆森效应

当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆森热)。汤姆森效应(英語:Thomson effect)是英国物理学家威廉·汤姆森于1854年发现的:将一根导线通恒定电流,由于导线有电阻而发热。再将这根带电的导线的某小局部加热;使它产生温度梯度。这根导线就在原有发热的基础上,出现吸热或放热的现象。[3]或者反过来,当一根金属棒的两端温度不同时,金属棒两端会形成电势差。

一個金屬(或半導體)材料的帕爾帖係數並不是一個定值,也會隨著溫度而改變。在一個具有溫度梯度的導體中,每個位置都可以視為是具有不同帕爾帖係數的材料。當電流通過時,不同的位置會各自產生帕爾帖效應,造成局部的吸熱或放熱。由於金屬的熱導率較高,這些局部的吸收或放出的热能會分散至整個導體,因而造成導體整體的吸熱或放熱。吸热或放热要由恒定电流的方向和导线热梯度的方向而决定。这种现象称为汤姆森效应,汤姆森效应並不會在均匀温度的通电流导体中出现。

参见

参考文献

  1. ^ A.11 Thermoelectric effect" Eng.FSU.edu.2002-02-01.
  2. ^ Daniel D.Pollock. A-2 Thermoelectric phenomena. CRC Handbook of Thermoelectrics. 1995 by CRC Press LLC
  3. ^ A.11 Thermoelectric effect" Eng.fsu.edu.2002-02-01.